
자바야�놀자� -� 활용편

자바야 놀자 - 활용편

발행일 2016년 4월 16일

지은이 허진경

발행처 퍼플

출판등록 제300-2012-167호 (2012년 09월 07일)

주 소 서울시 종로구 종로1가 1번지

대표전화 1544-1900

홈페이지 www.kyobobook.co.kr

ⓒ 허진경 2016

본 책 내용의 전부 또는 일부를 재사용하려면

반드시 저작권자의 동의를 받으셔야 합니다.

� �목�차

I

목� � � �차

1.�스레드�프로그래밍 ··· 1

1.1.�스레드(Thread)�실행 ·· 2

1.1.1.�스레드와� run()�메서드 ··· 2

1.1.2.�스레드�상태 ··· 6

1.2.�스레드(Thread)�클래스의�메서드 ·· 12

1.2.1.� getPriority()와� setPriority() ··· 13

1.2.2.� sleep() ··· 14

1.2.3.� join() ·· 15

1.2.4.� yield() ·· 16

1.3.�공유데이터�접근 ·· 18

1.3.1.�공유데이터의�문제점 ··· 18

1.3.2.�공유데이터�문제점의�해결(synchronized) ·· 22

1.3.3.� wait()와� notify() ·· 25

1.4.�요점�정리 ··· 33

2.�네트워크�프로그래밍 ·· 35

2.1.� TCP�네트워크�프로그램 ··· 36

2.1.1.� TCP�서버 ··· 37

2.1.2.� TCP�클라이언트 ·· 39

2.1.3.�간단한�채팅 ··· 40

2.2.� UDP�네트워크�프로그램 ·· 44

2.2.1.� DatagramPacket ·· 44

2.2.2.� DatagramSocket ·· 44

2.3.� TCP�채팅�프로그램�Ⅰ ·· 48

2.3.1.� ChatServer.java ··· 49

2.3.2.� ChatClient.java ·· 53

2.4.� TCP�채팅�프로그램�Ⅱ� ·· 56

자바야�놀자� -�활용편

Java

II

2.5.� TCP�파일서버�프로그램 ··· 66

2.6.�요점�정리 ··· 69

3.� JDBC�프로그래밍 ·· 70

3.1.�데이터베이스�개요 ·· 71

3.1.1.�데이터베이스�용어 ··· 71

3.2.� Oracle ··· 72

3.2.1.� Oracle� Database� 11g� Express� Edition ·· 72

3.2.2.� HR�스키마�활성화 ·· 78

3.2.3.� SQL� Developer ·· 80

3.3.�MariaDB ··· 85

3.3.1.�MariaDB ·· 85

3.4.� SQL ··· 89

3.4.1.� SQL�문법의�개요 ·· 89

3.4.2.�데이터�타입(Oracle과�MySQL) ··· 92

3.4.3.� Oracle�기본데이터�타입 ··· 92

3.4.4.�MySQL�기본�데이터�타입 ·· 92

3.4.5.� JDBC�환경설정 ·· 93

3.5.� JDBC� API ··· 96

3.5.1.� JDBC� API ·· 96

3.5.2.� JDBC�드라이버�타입 ·· 97

3.6.� JDBC�프로그램�구조 ··· 99

3.6.1.�드라이버�로딩(Driver� Loading) ·· 99

3.6.2.� Connection�객체�생성 ·· 100

3.6.3.� Statement�객체생성 ··· 101

3.6.4.� Statement�객체의�메서드를�이용한� SQL�실행� ·· 101

3.6.5.�질의�결과를�얻기위한�SELECT문 ·· 102

3.6.6.�데이터�추출 ··· 102

3.7.�실전� JDBC� API ·· 103

3.7.1.� PreparedStatement� ··· 103

� �목�차

III

3.7.2.� CallableStatement� ··· 104

3.7.3.� ResultSetMetaData ··· 106

3.7.4.� DatabaseMetaData ··· 107

3.8.�리소스�관리와�데이터�객체 ·· 109

3.9.�요점�정리 ··· 113

4.�윈도우�프로그래밍 ··· 115

4.1.� AWT�컴포넌트 ·· 116

4.1.1.�기본�컴포넌트 ·· 119

4.1.2.�텍스트�컴포넌트 ·· 134

4.1.3.�컨테이너�컴포넌트 ··· 138

4.1.4.�레이아웃�관리자 ·· 151

4.1.5.� FlowLayout ·· 152

4.1.6.� BorderLayout ··· 154

4.1.7.� GridLayout ··· 156

4.1.8.� CardLayout ·· 158

4.1.9.�복합�레이아웃(Complex� Layout) ··· 162

4.1.10.�레이아웃�관리자를�사용하지�않는�레이아웃 ··· 164

4.2.�메뉴(Menu) ··· 168

4.2.1.�MenuComponent ·· 168

4.2.2.�MenuBar ··· 169

4.2.3.�Menu ··· 169

4.2.4.�MenuItem ··· 171

4.2.5.� CheckboxMenuItem ·· 173

4.2.6.�팝업메뉴(PopupMenu) ··· 174

4.2.7.�MenuShortcut ·· 177

4.3.�색상(Color)과�글꼴(Font) ··· 180

4.3.1.�색상(Color) ··· 180

4.3.2.�글꼴(Font) ··· 181

4.4.�요점�정리 ··· 183

5.�이벤트�프로그래밍 ··· 185

자바야�놀자� -�활용편

Java

IV

5.1.�이벤트와�이벤트�리스너 ··· 186

5.1.1.�이벤트�모델 ··· 186

5.1.2.�이벤트�클래스�계층�구조 ··· 187

5.1.3.�저수준�이벤트와�고수준�이벤트 ··· 188

5.1.4.� EventListener ··· 189

5.1.5.�리스너�인터페이스와�메서드 ··· 193

5.2.�이벤트�프로그래밍 ·· 196

5.2.1.�이벤트�발생�클래스와�동일�클래스에�핸들러�구현 ·· 196

5.2.2.�별도의�클래스로�핸들러�구현 ··· 197

5.2.3.� Inner�클래스로�핸들러�구현 ·· 198

5.2.4.� Local�클래스로�핸들러�구현 ··· 199

5.2.5.�익명�클래스로�핸들러�구현 ·· 200

5.3.� Adapter�클래스 ·· 202

5.3.1.�이벤트�발생�클래스와�동일�클래스에�핸들러�구현 ·· 202

5.3.2.�별도의�클래스로�핸들러�구현 ··· 203

5.3.3.� Inner�클래스로�핸들러�구현 ·· 204

5.3.4.� Local�클래스로�핸들러�구현 ··· 205

5.3.5.�익명�클래스로�핸들러�구현 ·· 205

5.4.�주요�이벤트�클래스 ·· 207

5.4.1.� ActionEvent ··· 207

5.4.2.� AdjustmentEvent ··· 209

5.4.3.� ComponentEvent ·· 210

5.4.4.� ContainerEvent ··· 211

5.4.5.� FocusEvent ·· 213

5.4.6.� KeyEvent ··· 215

5.4.7.�MouseEvent ··· 218

5.4.8.� ItemEvent ··· 222

5.4.9.� TextEvent ··· 224

5.4.10.�WindowEvent ··· 225

5.4.11.�MouseWheelEvent ·· 230

5.5.�요점�정리 ··· 233

6.� Swing ··· 235

� �목�차

V

6.1.�스윙의�기본적인�이해 ··· 236

6.1.1.� JFC ·· 236

6.1.2.�룩앤필(Look� and� Feel) ··· 236

6.2.�스윙�컴포넌트 ··· 238

6.2.1.� JFrame ·· 238

6.2.2.� JPanel ··· 241

6.2.3.� JButton ··· 241

6.2.4.�아이콘 ·· 242

6.2.5.� JLabel ·· 244

6.2.6.� JCheckBox ··· 245

6.2.7.� JRadioButton ··· 247

6.2.8.� JToggleButton ··· 248

6.2.9.� JScrollPane ·· 250

6.2.10.� JTextComponents ··· 251

6.2.11.� JScrollBar ··· 256

6.2.12.� JSlider ··· 257

6.2.13.� JComboBox ·· 260

6.2.14.� JList ··· 262

6.2.15.� Borders ··· 263

6.2.16.� JApplet ·· 267

6.2.17.�툴팁(tool� tip) ··· 268

6.2.18.� JTabbedPane ··· 269

6.2.19.� JSplitPane ··· 271

6.3.�메뉴와�도구상자�컴포넌트 ··· 273

6.3.1.�주�메뉴 ·· 273

6.3.2.�팝업�메뉴 ··· 276

6.3.3.� JToolBar ··· 277

6.4.�스윙의�레이아웃�관리자 ··· 279

6.4.1.� BoxLayout ·· 279

6.4.2.� ScrollPaneLayout ·· 281

6.4.3.� ViewportLayout ··· 281

7.�프로그래밍�워크샵 ··· 283

7.1.� Stock�Market ·· 284

자바야�놀자� -�활용편

Java

VI

7.1.1.� Stock�Market�개요 ··· 284

7.1.2.� Eclipse에서�프로젝트�생성�방법 ··· 285

7.1.3.� SotckMarket�데이터베이스�테이블 ··· 286

7.2.�사용된�패턴들 ··· 288

7.2.1.� Design� Pattern에�대한�정의 ·· 288

7.2.2.�MVC(Model-View-Controller)패턴 ·· 288

7.2.3.� Command�패턴(Behavioral� Patterns) ·· 288

7.2.4.� Data� Access�Object(DAO)�패턴 ··· 289

7.2.5.� Value� Object(VO)�패턴 ·· 290

7.3.� 2-Tier� application ·· 291

7.3.1.� 2-Tier�애플리케이션 ··· 291

7.3.2.�이미�작성되거나�배치(deploy)�되어�있어야�하는�파일들 ·· 292

7.3.3.�작성해야�하는�파일들 ··· 292

7.3.4.� [Java응용프로그램-TestDatabase]�실행 ·· 292

7.3.5.� Value� Object�클래스 ·· 293

7.3.6.�예외�클래스 ··· 296

7.3.7.� Database�애플리케이션�메인 ··· 297

7.4.� GUI�만들기 ··· 304

7.5.� Connection� Pool ·· 317

7.5.1.�이미�작성되거나�배치(deploy)�되어�있어야�하는�파일들 ·· 317

7.5.2.�작성해야�하는�파일들 ··· 317

7.5.3.� broker.database.connpool.ConnectionPool.java ·· 318

7.5.4.�예외�클래스 ··· 332

7.5.5.� Database.java�수정 ··· 333

7.6.� 3-Tier� Application ·· 334

7.6.1.�이미�작성되거나�배치(deploy)�되어�있어야�하는�파일들 ·· 334

7.6.2.�작성해야�하는�파일들 ··· 335

7.6.3.� broker.Result.java ·· 336

7.6.4.� broker.Command.java ·· 337

7.6.5.� broker.Protocol.java ·· 338

7.6.6.� broker.JuryThread.java ··· 343

7.6.7.� ProtocolHandler.java ··· 347

7.6.8.� broker.Broker.java� -�수정 ··· 349

� �목�차

VII

이�책을�보기� 전에�자바에�대한�개념을�익히셔야�합니다.� 자바야�놀자(기본편)에서는�자바의�주
요� 개념들을� 더� 쉽고� 정확하게� 배울� 수� 있습니다.� 자바야� 놀자(기본편)은� 인터넷� 교보문고1)를�
통해�구매하실�수�있습니다.

이�책의�소스코드는�http://javaspecialist.co.kr/board/629에서�다운로드�받을�수�있습니다.

1)� http://pod.kyobobook.co.kr/newPODBookList/newPODBookDetailView.ink?barcode=1400000280836

1

1. 스레드�프로그래밍

이�장에서는�멀티스레드�프로그래밍에�대해�설명하기로�하겠습니다.�스레드는�프로

그램�내에서�실행되는�흐름의�단위입니다.�스레드를�이용하면�동시에�여러�개�작업

을�수행시킬�수�있습니다.�이�장에서는�스레드의�기본적인�사용법�및�스레드와�관련

된�여러�메서드들의�사용법에�대해서�설명합니다.�또한�멀티스레드와�멀티스레드에

서�주의해야�할�사항들에�대해�설명합니다.

주요�내용입니다.

� -�스레드�코드�작성�및�실행

� -� run()�메서드

� -�스레드�상태

� -� getPriority()와� setPriority()

� -� sleep()

� -� join()

� -� yield()

� -� synchronized(공유데이터�접근)

� -�wait()와�notify()

자바야�놀자� -�활용편

Java

2

1.1. 스레드(Thread)�실행

스레드는�프로그램�내에서,�특히�프로세스�내에서�실행되는�흐름의�단위를�의미합니다.�일

반적으로�한�프로그램은�하나의�스레드를�가지고�실행됩니다.�그러나�프로그램�환경에�따

라�둘�이상의�스레드를�동시에�실행해야�할�수도�있습니다.�이러한�프로그램을�멀티스레드

(multi-thread)�프로그램�이라고�합니다.�멀티스레드�프로그램의�가장�쉬운�예를�떠올린다

면�채팅을� 들� 수� 있습니다.� 채팅은� 사용자가�입력한� 채팅내용을�상대방에게� 보내기�위한�

스레드와�상대방으로부터�전송된�내용을�화면에�보이게�하는�스레드가�동시에�실행되어�사

용자가�채팅�내용을�입력하는�도중에도�상대방으로부터�전송된�내용이�화면에�보이는�것입

니다.�사실�멀티스레드�프로그램의�스레드가�동시에�실행되는�것처럼�보이지만�CPU(코어

가�1개일�경우)는�여러�개의�스레드가�실행되어야�할�경우�시분할�방식에�따라�어느�한�순

간에는�한�개의�스레드만�실행시킵니다.�그런데�스레드에�할당된�CPU�사용시간�간격이�매

우�작기� 때문에�사용자는�동시에�진행되는�것처럼�느끼는�것입니다.�

스레드는�플랫폼에�따라�약간씩의�차이가�있기� 때문에�프로그래머가�이를�조정해�주어야�

하며,�운영체제에�따라서도�처리방식의�차이가�있습니다.�프로세스는�각각�하나의�CPU�자

원을�가지지만,� 스레드는�하나의�자원을�공유할�수�있습니다.�멀티프로세스와�멀티스레드

는�양쪽�모두�여러�흐름이�동시에�진행된다는�공통점을�가지고�있습니다.�하지만�멀티프로

세스에서�각�프로세스는�독립적으로�실행되며�각각�별개의�메모리를�차지하고�있는�것과�

달리�멀티스레드는�프로세스�내의�메모리를�공유해�사용할�수�있습니다.�또한�프로세스�간

의�전환� 속도에�비하여�스레드�간의� 전환�속도가�더� 빠릅니다.

멀티스레드의�다른�장점은�CPU가�여러�개2)일�경우에�각각의�프로세서가�스레드�하나씩을�

담당하는�방법으로�속도를�높일�수�있다는�것입니다.�이러한�시스템에서는�여러�스레드가�

실제� 시간상으로� 동시에� 수행될� 수� 있기� 때문입니다.� 그러나� 멀티스레드� 프로그램에서는�

각각의�스레드�중�어떤�것이�먼저�실행될지�그�순서를�알�수�없기�때문에�실행�결과를�예

측하기�어려운�단점이�있습니다.

이� 장에서는� 용어� 정의를� “스레드”는� 실행환경을� 의미하고,� “실행환경(execution�

context)”은�프로그램과�데이터에�가상(Virtual)� CPU를�함께�내장하고�있음을�나타내기로�

하겠습니다.� 그리고� "Thread"는� java.lang.Thread� 클래스를�의미합니다.

1.1.1. 스레드와� run()�메서드

스레드를�실행되는�흐름의�단위라고�하였는데,�하나의�작업이�수행되기�위해서는�다음�그

2)�CPU가�하나이더라도�코어(Core)가�둘�이상이라면�각각의�코어가�스레드�하나씩을�담당하여�처리합니다.�

1
스레드�프로그래밍

Chapter

3

림에�보는�것처럼�3가지�요소를�필요로�합니다.�먼저� “Code”에�해당하는�부분에서�개발자

는� 스레드에� 의해� 수행될� 작업� 내용들을� run()� 메서드에� 구현해야� 하는데� 그림에서�

Runnable� 인터페이스를� 구현한� HelloRunner� 클래스입니다.� 이러한� 클래스들을� 러너

(runner)클래스라고� 부릅니다.� 그� 다음에� “Data”부분이� 있는데� 스레드에� 의해� 수행될�

Runner�객체에�해당하며�그림에서는�HelloRunner�클래스의�인스턴스�r에�해당합니다.�마

지막으로� “Cpu”에� 해당하는� 부분으로� HelloRunner� 클래스의� 인스턴스� r을� 인자로� 하여�

스레드� 객체를� 만드는� 부분입니다.� 이처럼� 하나의� 스레드를� 만들려면� Runner� 클래스,�

Runner� 객체,� 그리고� Thread� 객체가�필요합니다.

다음�프로그램은�스레드를�이용하여�화면에�숫자를�출력하는�간단한�예제입니다.

HelloRunner.java

1: public class HelloRunner implements Runnable {
2: int i;
3:
4: public void run() {
5: i = 0;
6: while (true) {
7: System.out.println("Hello : " + i++);
8: if (i > 10) {
9: break;
10: }
11: }
12: }//end run()
13: }//end class

HelloRunner� 클래스를� 만들기� 위해서는� Runnable인터페이스를� implements합니다.�

HelloRunner�클래스처럼�쓰래드가�실행할�코드를�작성한�클래스를�러너(Runner)�클래스

라고�부릅니다.�러너�클래스를�작성할�때�반드시�Runnable�인터페이스를�구현한�클래스가�

아니어도�됩니다.� Thread�클래스를�직접�상속받아�구현할�수�있습니다.�그러나�Runnable�

인터페이스를�사용하여�러너�클래스를�구현하는�것을�권장합니다.

자바야�놀자� -�활용편

Java

4

run()�메서드는�스레드가�수행할�부분입니다.� run()�메서드는�Runnable�인터페이스의�추

상(abstract)� 메서드이기� 때문에� Runnable� 인터페이스를� 구현(implements)하는� 클래스

에서는� 반드시� run()� 메서드를� 만들어� 줘야� 합니다.� run()� 메서드는� 인자가� 없다는� 것과�

리턴타입이� void� 임에� 주의� 하세요.

다음�코드는�스레드를�생성하고�시작시키는�예입니다.

ThreadExample.java

1: public class ThreadExample {
2: public static void main(String args[]) {
3: System.out.println("main() 메서드�시작");
4: HelloRunner r = new HelloRunner();
5: Thread t = new Thread(r);
6: t.start();
7: System.out.println("main() 메서드�끝");
8: }
9: }

main�안에서�HelloRunner�클래스의�객체를�생성하고� Thread�클래스의�객체를�생성하고�

있습니다.�이때,� Thread�생성자의�인자로�HelloRunner�클래스의�객체를�사용하였습니다.�

이�부분은�스레드에게�어떤�러너�클래스의�run()�메서드를�실행시킬�것인지를�알려줍니다.�

생성된� 스레드를� 실행시키기� 위해서는� 반드시� start()� 메서드를� 호출해야� 합니다.� start()�

메서드를�호출하면�스레드는� HelloRunner� 클래스의� run()� 메서드를�실행합니다.�

이�예제를�실행시키면�7라인의�출력문장이�HelloRunner의� run()�메서드보다�먼저�실행될�

것입니다.�그�이유는�ThreadExample�클래스를�실행시키면�main�스레드와� t�스레드가�실

행되는데� t� 스레드를� start()� 시키면� t� 스레드가�바로�실행되는�것이�아입니다.� start()� 한�

스레드는�먼저�실행�가능한�상태(Runnable)가�된�다음�스레드�스케줄러로부터�프로세서를�

할당받으면� 그때� 실행(Running)되기� 때문입니다.� t� 스레드가� 실행가능상� 상태일� 때에는�

아마도�main�스레드는�이미�실행�중일�것입니다.�그래서�main스레드가�실행시키는�9라인

이�먼저� 실행되는�것입니다.

일반적으로� 스레드를� 만드는� 방법은� Runnable인터페이스를� 구현하여� 사용하는� 방법과�

Thread� 클래스를�상속받아�구현하는�방법이�있습니다.� Thread� 클래스를�상속받아� run()�

메서드를�재정의�하는�방법도�가능하지만,�반드시�다른�클래스를�상속받아야�하는�상황이

라면� Thread�클래스를�상속받을�수는�없을�것입니다.�앞의�예제와�같이� Runnable인터페

이스를�구현하는�방법을�권장합니다.� Thread�클래스는� java.lang�패키지에�있는�클래스이

므로� import문이� 필요�없습니다.

다음�프로그램�sleep()�메서드를�사용하여�main�스레드의�실행을�잠시�멈추게�하여�t�스레

드를�먼저(?)� 실행되게�하는�예입니다.�

exam/java/chapter06/thread/HelloRunner2.java

1
스레드�프로그래밍

Chapter

5

1: package exam.java.chapter06.thread;
2:
3: public class HelloRunner2 implements Runnable {
4: int i;
5: public void run() {
6: i = 0;
7: while (true) {
8: System.out.println("숫자�: " + i++);
9: if (i > 10) {
10: break;
11: }
12: }
13: }//end run()
14: }//end class

exam/java/chapter06/thread/ThreadExample2.java

1: package exam.java.chapter06.thread;
2:
3: public class ThreadExample2 {
4: public static void main(String args[]) {
5: System.out.println("main()의�시작");
6: HelloRunner2 r = new HelloRunner2();
7: Thread t = new Thread(r);
8: t.start();
9: try {
10: Thread.sleep(10);
11: } catch(InterruptedException e) {
12: e.printStackTrace();
13: }
14: System.out.println("main()의�끝");
15: }
16: }

이�예제가�이�전�프로그램과�다른�점은� TestThreadSleep.java�파일의� 9라인에서� 13라인

까지�입니다.� 7라인에서는�스레드를�생성합니다.�그리고�8라인에서는� start()�메서드를�사

용하여� 스레드를� 실행시킵니다.� 10라인의� Thread.sleep(10)은� 현재� 수행하고� 있는�스레

드의�수행을�잠깐�멈추게�하고�있습니다.� Thread.sleep()�메서드는�밀리초(1/1000초)�단

위로�스레드를�지연시킬�수� 있습니다.� sleep()� 메서드는� InterruptedException이� 발생할�

가능성이�있는�메서드이므로� try~catch블록으로�예외처리를�해�주었습니다.�이때� sleep()�

되는�스레드는�main�스레드일�경우도�있고�6라인에서�생성한�스레드� t�일�수도�있습니다.�

이� 예제에서는� 확률적으로� sleep()� 메서드에� 의해� 스레드� 수행이� 잠깐� 멈추는� 스레드는�

main�스레드일�가능성이�높습니다.�그러므로�t�스레드를�실행시킨�다음�main�스레드에�의

해� 14라인에서�화면에� "main()의� 끝"라는� 문자열을�출력합니다.�

자바야�놀자� -�활용편

Java

6

1.1.2. 스레드�상태

스레드는�시작과�종료상태만�이는�것은�아닙니다.� start()메서드에�의해�스레드가�실행되기�

전에�스레드는�실행�가능상태가�됩니다.�다음�그림은�스레드의�기본적인�상태도를�나타낸�

것입니다.

스레드�상태도를�살펴보면�먼저�하나의�스레드가�생성된�후� start()�메서드를�호출하면�곧

바로�실행되지�않고�실행�가능한�상태가�되는�것을�알�수�있습니다.�스레드는� start()�메서

드가�호출되면�실행가능(Runnable)한�상태로�대기하다가�스레드�스케줄러에�의해�프로세

서를�할당받으면�스레드가�실행(Running)됩니다.�할당받은�시간�내에� run()� 메서드�실행

이� 끝난다면� 스레드는� 종료되고,� 그러지� 못한다면� 스레드는� 다시� 실행가능(runnable)한�

상태로� 돌아가� 스레드�스케줄러에�의해� 프로세서를� 할당�받을� 때까지� 기다리게� 된다.� 또�

스레드가�실행도중에�sleep(),� join(),� yield()�등과�같은�특정한�메서드의�Blocking�이벤트

가�발생하면�봉쇄(Blocked)상태가�될� 수도� 있습니다.

앞에서�언급했지만�스레드를�생성하는�방법은�두�가지가�있는데�첫�번째�방법은�앞에서�설

명한�것과�같이�Runnable�인터페이스를� implements하는�방법이었고,�이제�두�번째�방법

에�대해� 알아보겠습니다.� 이� 방법은�스레드�클래스를�직접�상속받아�구현하는�것입니다.�

다음� 프로그램은�앞의�예제를�스레드�클래스를�상속받아�구현한�것입니다.

exam/java/chapter06/thread/MyThread.java

1: package exam.java.chapter06.thread;
2:
3: public class MyThread extends Thread {
4: public static void main(String args[]) throws Exception {
5: Thread t = new MyThread();
6: t.start();
7: try {
8: Thread.sleep(10);
9: } catch(InterruptedException e) {
10: e.printStackTrace();
11: }
12: System.out.println("main()의�끝");
13: }//end main
14: public void run() {
15: int i = 0;

1
스레드�프로그래밍

Chapter

7

16: while (true) {
17: System.out.println("숫자�: " + i++);
18: if (i == 10) {
19: break;
20: }
21: }
22: }//end run
23: }//end class

Runnable� 인터페이스를� implements하지�않고� Thread�클래스를�상속받아서� run()�메서

드를�재정의해서�스레드를�만들었습니다.�스레드를�생성할�때�어떤�방식을�사용해도�되지

만�일반적으로�Runnable�인터페이스를�구현하는�방법은�더�객체�지향적이고,�단일�상속의�

문제를�해결할�수�있으며,�반드시� run()� 메서드를�구현해야�하므로�일관성을�갖는�장점이�

있습니다.�

1.1.2.1. 세계�시간�출력�프로그램

다음�프로그램은�스레드를�이용하여�시계를�만드는�예제입니다.�시계는�현재�시간을�1초에�

한�번씩� 화면에�표시하면�됩니다.

exam/java/chapter06/thread/WorldClock.java

1: package exam.java.chapter06.thread;
2:
3: import java.util.*;
4: import java.lang.Thread;
5:
6: public class WorldClock implements Runnable {
7:
8: Calendar calendar;
9: String location;
10:
11: public WorldClock(String city) {
12: this.location = city;
13: }
14:
15: public void run() {
16: while (true) {
17: this.displayDate();
18: try {
19: Thread.sleep(1000);
20: } catch (InterruptedException e) {
21: }//end try~catch
22: }//end while
23: }//end run()
24:
25: public void displayDate() {

자바야�놀자� -�활용편

Java

8

26: String[] ids;
27: SimpleTimeZone pdt = null;
28:
29: if (this.location == "서울") {
30: ids = TimeZone.getAvailableIDs(9*60*60*1000);
31: if (ids.length == 0) System.exit(0);
32: pdt = new SimpleTimeZone(9*60*60*1000, ids[0]);
33: } else if (this.location == "도쿄") {
34: ids = TimeZone.getAvailableIDs(9*60*60*1000);
35: if (ids.length == 0) System.exit(0);
36: pdt = new SimpleTimeZone(9*60*60*1000, ids[0]);
37: } else if (this.location == "LA") {
38: ids = TimeZone.getAvailableIDs(-8*60*60*1000);
39: if (ids.length == 0) System.exit(0);
40: pdt = new SimpleTimeZone(-8*60*60*1000, ids[0]);
41: } else if (this.location == "뉴욕") {
42: ids = TimeZone.getAvailableIDs(-5*60*60*1000);
43: if (ids.length == 0) System.exit(0);
44: pdt = new SimpleTimeZone(-5*60*60*1000, ids[0]);
45: }
46:
47: calendar = new GregorianCalendar(pdt);
48: calendar.setTime(new Date());
49: System.out.print("현재�" + location + "시각�:");
50: System.out.print(calendar.get(Calendar.YEAR)+"년�");
51: System.out.print((calendar.get(Calendar.MONTH)+1)+"월�");
52: System.out.print(calendar.get(Calendar.DATE)+"일�:");
53: System.out.print(calendar.get(Calendar.HOUR_OF_DAY)+"시�");
54: System.out.print(calendar.get(Calendar.MINUTE)+"분�");
55: System.out.print(calendar.get(Calendar.SECOND)+"초�");
56: System.out.println(" ZONE_OFFSET: " +

(calendar.get(Calendar.ZONE_OFFSET)/(60*60*1000)));
57: }
58: }//end class

exam/java/chapter06/thread/ThreadClockExample.java

1: package exam.java.chapter06.thread;
2:
3: public class ThreadClockExample {
4: public static void main(String args[]) {
5: WorldClock seoul = new WorldClock("서울");
6: WorldClock tokyo = new WorldClock("도쿄");
7: WorldClock la = new WorldClock("LA");
8: WorldClock newyork = new WorldClock("뉴욕");
9:
10: Thread seoulThread = new Thread(seoul);
11: Thread tokyoThread = new Thread(tokyo);
12: Thread laThread = new Thread(la);
13: Thread newyorkThread = new Thread(newyork);
14:

1
스레드�프로그래밍

Chapter

9

15: seoulThread.start();
16: tokyoThread.start();
17: laThread.start();
18: newyorkThread.start();
19: }
20: }

위의� 코드는� main에서� seoulThread,� tokyoThread,� laThread,� newyorkThread� 4개의�

스레드를�생성하고�각�스레드는�해당하는�지역의�시간을�출력합니다.

1.1.2.2. 폭탄�해체하기�프로그램

다음� 예제는�멀티스레드를� 이용하면� 무엇을�할� 수� 있는지� 보여주는� 간단한�예입니다.� 이�

프로그램은�주어진�시간�안에�문제를�풀어야�합니다.�시간은� 30초가�주어지며�30초�이내

에�문제를�풀어야�합니다.�기회는� 3번까지�주어지며� 30초가�지나지�않더라도�3번의�기회

를�모두�사용하면�실패합니다.�시간을�감소시키는�스레드와�문제를�출제하는�스레드가�동

시에�실행됩니다.�코드에서�주의해서�봐야�할�부분은�스레드를�종료시키는�부분입니다.�스

레드를�종료시키기�위해�플래그�값을� 사용합니다.

스레드를�종료시키기�위해서는�스레드를� stop()�메서드를�사용해서�강제종료�시키지�마세

요.� stop()� 메서드는� 데드락(Dead� Lock)이� 발생할� 가능성이� 있어서� deprecated� 됐습니

다.� 스레드를� 종료시키기� 위해서는� 플래그� 값� 등을� 이용해서� run()� 메서드를� 자연스럽게�

종료시키는�것이�더� 바람직합니다.�

FlagData� 클래스는�플래그�값을�저장하는�클래스입니다.� 변수의�값을�변경시켜� run()� 메

서드가�자연스럽게�종료되도록�하기�위해�사용합니다.

exam/java/chapter06/thread/FlagData.java

1: package exam.java.chapter06.thread;
2:
3: public class FlagData {
4: public static boolean isOK = false;
5: public static boolean isFail = false;
6: }//end FlagData class

CounterRunner�클래스는�시간을�감소시키면서�폭파장치�해체�여부를�확인하는�러너클래

스입니다.

exam/java/chapter06/thread/CounterRunner.java

1: package exam.java.chapter06.thread;
2:

자바야�놀자� -�활용편

Java

10

3: public class CounterRunner implements Runnable {
4: public void run() {
5: for(int i=30; i>0; i--) {
6: //문제를�주어진�시간�안에�풀었는가? 확인
7: //플래그�값으로�확인
8: if(FlagData.isOK) {
9: System.out.println("폭파장치가�해제되었습니다.");
10: return;
11: }
12: if(FlagData.isFail) {
13: System.out.println("폭파장치를�잘못�건드렸습니다.");
14: break;
15: }
16:
17: System.out.println(i+"초�남았습니다.");
18: //1초씩�sleep
19: try {
20: Thread.sleep(1000);
21: } catch (InterruptedException e) {
22: //nothing
23: }
24: }
25: System.out.println("Booooooooom!!!!!!!!!!!");
26: System.exit(0);
27: }//end run
28: }//end CounterRunner class

QuestionRunner�클래스는�문제를�출제하고�정답을�체크하는(폭탄을�해체하는)�러너클래

스입니다.

exam/java/chapter06/thread/QuestionRunner.java

1: package exam.java.chapter06.thread;
2:
3: import javax.swing.JOptionPane;
4:
5: public class QuestionRunner implements Runnable {
6: String[] question = { "3+5=",
7: "2349*245=",
8: "대한민국의�수도는?",
9: "200-199=",
10: "Runnable 인터페이스의�메서드는?",
11: "2의�16승은?" };
12: String[] answer = { "8",
13: "575505",
14: "서울",
15: "1",
16: "run",
17: "65536" };
18: public void run() {
19: System.out.println("주어진�시간�안에�문제를�풀어야�합니다.");

1
스레드�프로그래밍

Chapter

11

20: System.out.println("기회는�3번까지�주어집니다.");
21: int failCount = 3;
22: while(true) {
23: int index = (int)(Math.random()*6);
24:
25: System.out.println(failCount +"번의�기회가�남았습니다.");
26: String input = JOptionPane.showInputDialog(question[index]);
27:
28: if(answer[index].equals(input)) {
29: System.out.println("정답입니다.");
30: FlagData.isOK = true;
31: return;
32: }else {
33: failCount--;
34: if(failCount <= 0) {
35: FlagData.isFail = true;
36: return;
37: }
38: }
39: }//end while
40: }//end run
41: }//end QuestionRunner class

다음�코드는�메인클래스입니다.� 스레드를�생성하고�실행시키기�위한�코드입니다.

exam/java/chapter06/thread/ThreadBombExample.java

1: package exam.java.chapter06.thread;
2:
3: public class ThreadBombExample {
4: public static void main(String[] args) {
5: CounterRunner cr = new CounterRunner();
6: QuestionRunner qr = new QuestionRunner();
7:
8: Thread t1 = new Thread(cr);
9: Thread t2 = new Thread(qr);
10:
11: t1.start();
12: t2.start();
13: }
14: }

자바야�놀자� -�활용편

Java

12

1.2. 스레드(Thread)�클래스의�메서드

다음�프로그램은�구구단의�출력부분을�스레드로�만들어�동시에�여러�개의�스레드가�실행된�

후�출력하는�예제입니다.�다음�예를�통해�스레드�클래스가�제공하는�메서드들에�대하여�설

명하겠습니다.

exam/java/chapter06/thread/GuGuRunner.java

1: package exam.java.chapter06.thread;
2:
3: public class GuGuRunner implements Runnable {
4: private int dan;
5: public GuGuRunner(int init_dan) {
6: dan = init_dan;
7: }
8:
9: public void run() {
10: for(int i=0; i<10; i++) {
11: System.out.println(dan + "단: " + dan + "*" + i + "=" + dan*i);
12: }
13: }
14: }

exam/java/chapter06/thread/ThreadGuGuExample.java

1: package exam.java.chapter06.thread;
2:
3: public class ThreadGuGuExample {
4: public static void main(String[] args) {
5: Thread t2 = new Thread(new GuGuRunner(2));
6: Thread t3 = new Thread(new GuGuRunner(3));
7: Thread t4 = new Thread(new GuGuRunner(4));
8: Thread t5 = new Thread(new GuGuRunner(5));
9: Thread t6 = new Thread(new GuGuRunner(6));
10: Thread t7 = new Thread(new GuGuRunner(7));
11: Thread t8 = new Thread(new GuGuRunner(8));
12: Thread t9 = new Thread(new GuGuRunner(9));
13: t2.start(); t3.start(); t4.start();
14: t5.start(); t6.start(); t7.start();
15: t8.start(); t9.start();
16: }
17: }

앞의�프로그램을�실행시키면�스레드�t2부터�t9까지�서로�경쟁하며�실행되는�것을�알�수�있

습니다.�한순간에는�하나의�스레드만�수행되며�할당된�시간동안�스레드가�수행되다가,� 다

른�스레드에게�프로세서�사용권한이�넘어갑니다.�자바에서는�우선순위�값을�각각�스레드에�

배정하고,�우선순위가�높은�스레드가�프로세서�사용권한을�할당받도록�하여�더�많은�프로

1
스레드�프로그래밍

Chapter

13

세스�사용�시간을�갖도록�하는�선점형(Preemptive)�방식을�사용합니다.�우선순위�값의�할

당은�스레드�스케줄러(Thread� Scheduler)가� 담당합니다.

1.2.1. getPriority()와� setPriority()

자바의�스레드�우선순위는�1부터�10까지�가질�수�있습니다.�숫자가�클수록�우선순위는�높

으며�기본� 우선순위는� 5입니다.�

다음� 프로그램은� setPriority()� 메서드를� 이용하여� 스레드의� 우선순위를� 변경하고,�

getPriority()� 메서드를�이용하여�스레드의�우선순위를�알아내는�예제입니다.

exam/java/chapter06/thread/GuGuRunner.java(이�코드는�앞에서�작성했던�코드입니다.)

1: package exam.java.chapter06.thread;
2:
3: public class GuGuRunner implements Runnable {
4: private int dan;
5: public GuGuRunner(int init_dan) {
6: dan = init_dan;
7: }
8:
9: public void run() {
10: for(int i=0; i<10; i++) {
11: System.out.println(dan + "단: " + dan + "*" + i + "=" + dan*i);
12: }
13: }
14: }

exam/java/chapter06/thread/ThreadPriorityExample.java

1: package exam.java.chapter06.thread;
2:
3: public class ThreadPriorityExample {
4: public static void main(String[] args) {
5: Thread t2 = new Thread(new GuGuRunner(2));
6: Thread t3 = new Thread(new GuGuRunner(3));
7: Thread t4 = new Thread(new GuGuRunner(4));
8: Thread t5 = new Thread(new GuGuRunner(5));
9:
10: t2.setPriority(4);
11: System.out.println(t3.getPriority());
12: t2.start();
13: t3.start();
14: t4.start();
15: t5.start();
16: }
17: }

자바야�놀자� -�활용편

Java

14

자바에서� 우선순위가� 높은� 스레드를� 먼저� 실행시키는� 선점형� 방식을� 채택하고� 있습니다.�

그러므로�이�코드의�예상되는�실행�결과는� t2가�실행하는� 2단이�가장�마지막에�실행되는�

것입니다.�그러나�예제를�실행시키는�컴퓨터�환경에서�CPU의�코어가�두�개�이상이라면�결

과에서�t2가�우선순위가�낮더라도�다른�스레드보다�먼저�실행될�수�있습니다.�t2가�start된�

후� t3가� runnable� 상태가�되기� 전에� t2가� running될�수도� 있습니다.

1.2.2. sleep()

다음� 프로그램은� sleep()� 메서드를� 이용하여� 해당하는� 스레드를� 지정한� 시간(mille�

second)동안�정지시키는�예제입니다.� sleep()�메서드는�스레드의�실행을�지정한�시간동안�

정지시킵니다.�지정한�시간이�지나면�스레드는�다시�실행상태로�되는�것이�아니고�실행�가

능한�상태로�전이됩니다.�

exam/java/chapter06/thread/GuGuSleepRunner.java

1: package exam.java.chapter06.thread;
2:
3: public class GuGuSleepRunner implements Runnable {
4: private int dan;
5: public GuGuSleepRunner(int init_dan) {
6: dan = init_dan;
7: }
8: public void run() {
9: long sleepTime = (long)(Math.random() * 500);
10: System.out.println(dan + "단이" + sleepTime + "만큼�쉼");
11: try{
12: Thread.sleep(sleepTime);
13: }catch (InterruptedException e) {
14: }
15: for(int i=0; i<10; i++) {
16: System.out.println(dan + "단: " + dan + "*" + i + "=" + dan*i);
17: }
18: }
19: }

exam/java/chapter06/thread/ThreadSleepExample.java

1: package exam.java.chapter06.thread;
2:
3: public class ThreadSleepExample {
4: public static void main(String[] args) {
5: Thread t2 = new Thread(new GuGuSleepRunner(2));
6: Thread t3 = new Thread(new GuGuSleepRunner(3));
7: Thread t4 = new Thread(new GuGuSleepRunner(4));
8: Thread t5 = new Thread(new GuGuSleepRunner(5));
9: Thread t6 = new Thread(new GuGuSleepRunner(6));
10:

1
스레드�프로그래밍

Chapter

15

11: t2.start();
12: t3.start();
13: t4.start();
14: t5.start();
15: t6.start();
16: }
17: }

1.2.3. join()

다음� 프로그램은� join()� 메서드에� 관한� 예제입니다.� join()메서드는� join된� 스레드� 이후에�

실행(start)되는� 스레드들은� join된� 스레드가�실행을�종료한�다음� 실행됩니다.

exam/java/chapter06/thread/GuGuRunner.java(이�코드는�앞에서�작성된�예제입니다.)

1: package exam.java.chapter06.thread;
2:
3: public class GuGuRunner implements Runnable {
4: private int dan;
5: public GuGuRunner(int init_dan) {
6: dan = init_dan;
7: }
8: public void run() {
9: for(int i=0; i<10; i++) {
10: System.out.println(dan + "단: " + dan + "*" + i + "=" + dan*i);
11: }
12: }
13: }

exam/java/chapter06/thread/ThreadJoinExample.java

1: package exam.java.chapter06.thread;
2:
3: public class ThreadJoinEaxmple {
4: public static void main(String[] args) {
5: Thread t2 = new Thread(new GuGuRunner(2));
6: Thread t3 = new Thread(new GuGuRunner(3));
7: Thread t4 = new Thread(new GuGuRunner(4));
8: Thread t5 = new Thread(new GuGuRunner(5));
9: Thread t6 = new Thread(new GuGuRunner(6));
10:
11: t2.setPriority(4);
12: t3.setPriority(4);
13: t4.setPriority(4);
14: t5.setPriority(4);
15: t6.setPriority(4);
16:
17: t2.start();
18: t3.start();

자바야�놀자� -�활용편

Java

16

19: t4.start();
20: try {
21: t4.join(); //t5와�t6은�t4의�실행이�종료돼야�실행됨
22: }catch(InterruptedException e) {
23: }
24: t5.start();
25: t6.start();
26: }
27: }

1.2.4. yield()

다음�프로그램은� yield()�메서드에�관한�예제로� yield()는�동일순위의�스레드에게�프로세서

의�사용을�양보하는�기능을�가지고�있습니다.�우선순위가�다른�스레드에게는�아무런�영향

을�주지� 않습니다.

exam/java/chapter06/thread/GuGuYieldRunner.java

1: package exam.java.chapter06.thread;
2:
3: public class GuGuYieldRunner implements Runnable {
4: private int dan;
5: public GuGuYieldRunner(int init_dan) {
6: dan = init_dan;
7: }
8: public void run() {
9: if(dan == 8) {
10: System.out.println("8단이�9단에게�양보");
11: Thread.yield();
12: }
13: for(int i=0; i<10; i++) {
14: System.out.println(dan + "단: " + dan + "*" + i + "=" + dan*i);
15: }
16: }
17: }

exam/java/chapter06/thread/ThreadYieldExample.java

1: package exam.java.chapter06.thread;
2:
3: public class ThreadYieldExample {
4: public static void main(String[] args) {
5:
6: Thread t6 = new Thread(new GuGuYieldRunner(6));
7: Thread t7 = new Thread(new GuGuYieldRunner(7));
8: Thread t8 = new Thread(new GuGuYieldRunner(8));
9: Thread t9 = new Thread(new GuGuYieldRunner(9));
10:

1
스레드�프로그래밍

Chapter

17

11: t6.setPriority(4);
12: t7.setPriority(4);
13: t8.setPriority(5);
14: t9.setPriority(5);
15:
16: t6.start();
17: t7.start();
18: t8.start();
19: t9.start();
20: }
21: }

자바야�놀자� -�활용편

Java

18

1.3. 공유데이터�접근

현�시점에서�여러�스레드�중�어떤�스레드가�수행될지�알�수�없고,�선정된�스레드가�얼마동

안�수행될지�또�이�스레드가�끝난�후�다음에�어떤�스레드가�수행될지�알�수�가�없습니다.�

따라서�프로그래머가�실행되는�스레드들을�관리�할�필요가�있습니다.�특히,�여러�스레드들

이�공유�데이터(Shared� Data)에� 접근할�때는�스레드들의�관리가�더욱� 필요합니다.�

1.3.1. 공유데이터의�문제점

다음�예제는�반드시�이해해야하므로�충분한�시간을�가지고�공부하기�바랍니다.�먼저�이해

를�돕기� 위해� 다음의�그림을�설명하겠습니다.

그림에서� 오른쪽� 공유데이터� 클래스를� 살펴보면� push()와� pop()� 메서드가� 있습니다.� 이�

메서드들은�스택에�데이터를�넣거(push)나� 빼내(pop)는�일을� 합니다.�

첫�번째�스레드(T1)에서�스택에�데이터를�넣기�위해� push()�메서드를�호출합니다.�데이터

를� 받은� push()� 메서드는� 스택에� 데이터를� 넣습니다(①).� 그� 후� 스택� 데이터를� 가리키는�

포인터를�하나�증가시켜야�하는데,�그�전에�시간이�걸리는�작업(longJob())을�수행한다고�

가정하면�중요한�문제가�발생할�수�있습니다.�그�이유는�첫�번째�스레드(T1)�수행�중에�스

케줄러로부터� 할당받은� 프로세서시간을� 사용하고� 나면� T1� 스레드는� Running상태에서�

Runnable�상태로�되고,�이때�두�번째�스레드(T2)가� Running�상태가�될�수�있습니다.�시

간이� 오래� 걸리는� 일(longJob())을� 수행하는� 도중에(아직� 포인터를� 증가시키지� 않았음),�

우선권이�다른�스레드에게�넘어간�것입니다.�두�번째�스레드(T2)는�첫�번째�스레드에서�포

인터가�증가하지�않았는데도� push()� 메서드를�호출하게�되는데,� 이때� 포인터가�가리키는�

곳에�데이터를�넣게�되므로�첫�번째�스레드� T1이� push한�데이터에�두�번째�스레드� T2가�

1
스레드�프로그래밍

Chapter

19

push한� 데이터가�덮어써지게�되는�것입니다.�

지금까지�설명한�내용을�이해할�수�있도록�예제코드를�작성하겠습니다.

다음�코드는�공유데이터에�사용되는�클래스입니다.� 푸시와�팝을�구현한�클래스입니다.� 공

유데이터�영역에�데이터를�푸시�할�때�어떤�데이터가�저장되는지�보여주기�위해서�push()�

메서드에서�푸시�한�데이터를�반환하도록�구현했습니다.�pop()�메서드의�synchronized�블

록은�뒤에서�자세하게�설명됩니다.

exam/java/chapter06/thread/SharedData.java

1: package exam.java.chapter06.thread;
2:
3: public class SharedData {
4:
5: int index=0;
6: char[] stack = new char[6];
7:
8: public char push(char c) {
9: stack[index] = c;
10: longJob();
11: index++;
12: return c;
13: }
14:
15: public char pop() {
16: synchronized(this) {
17: index--;
18: longJob();
19: return stack[index];
20: }
21: }
22:
23: public void longJob() {
24: for(int i=0; i<10; i++) {
25: System.out.print(".");
26: }
27: System.out.println();
28: }
29: }

아래의�코드는�스레드가�공유데이터�영역에�데이터를�푸시�합니다.

exam/java/chapter06/thread/PushRunner.java

1: package exam.java.chapter06.thread;
2:
3: public class PushRunner implements Runnable {
4: String name;
5: SharedData sd;
6: PushRunner(String name, SharedData sd) {

자바야�놀자� -�활용편

Java

20

7: this.name = name;
8: this.sd = sd;
9: }
10: public void run() {
11: System.out.println(name + sd.push('A'));
12: System.out.println(name + sd.push('B'));
13: System.out.println(name + sd.push('C'));
14: }
15: }

아래의�코드는�스레드가�공유데이터�영역에�저장되어�있는�데이터를�팝� 합니다.

exam/java/chapter06/thread/PopRunner.java

1: package exam.java.chapter06.thread;
2:
3: public class PopRunner implements Runnable {
4: String name;
5: SharedData sd;
6: PopRunner(String name, SharedData sd) {
7: this.name = name;
8: this.sd = sd;
9: }
10: public void run() {
11: System.out.println(name + sd.pop());
12: System.out.println(name + sd.pop());
13: System.out.println(name + sd.pop());
14: }
15: }

아래의�코드는�푸시�스레드와�팝�스레드를�각각�두�개씩�생성하여�실행시킵니다.�먼저�푸

시�스레드가�데이터를�푸시한�후에�팝�스레드가�데이터를�팝�하도록�하기�위해� join()�메서

드를�사용하였습니다.

exam/java/chapter06/thread/SharedDataExample.java

1: package exam.java.chapter06.thread;
2:
3: public class SharedDataExample {
4: public static void main(String[] args) {
5: SharedData sd = new SharedData();
6:
7: PushRunner pushr1 = new PushRunner("Push-하나�: ", sd);
8: PushRunner pushr2 = new PushRunner("Push-둘�: ", sd);
9:
10: Thread pusht1 = new Thread(pushr1);
11: Thread pusht2 = new Thread(pushr2);
12:
13: pusht1.start();
14: pusht2.start();
15:

1
스레드�프로그래밍

Chapter

21

16: try {
17: pusht1.join();
18: pusht2.join();
19: } catch (InterruptedException e) {
20: //nothing...
21: }
22:
23: System.out.println("\n스택에�저장된�데이터는");
24:
25: PopRunner popr1 = new PopRunner("Pop-하나�: ", sd);
26: PopRunner popr2 = new PopRunner("Pop-둘�: ", sd);
27:
28: Thread popt1 = new Thread(popr1);
29: Thread popt2 = new Thread(popr2);
30:
31: popt1.start();
32: popt2.start();
33:
34: }
35: }

예제를�실행시키면�스택에�데이터가�정상적으로�푸시�되지�않을�가능성이�있는�것을�알�수�

있습니다.�만일�불특정�다수가�사용하는�인터넷�환경에서�멀티스레드로�인한�공유데이터의�

손상은�매우�높은�확률을�갖게�될�것입니다.�지금까지의�상황에�대한�결론은�공유�데이터

를�가지고�작업하는�스레드는�예측할�수�없는�순간에�제어권이�다른�스레드로�양도되어�데

이터파손이나�손상을�일으킬�수�있음을�명심해야�한다는�것입니다.� SharedDataExample�

클래스를�실행시켰을�때의�결과는�항상�동일하지는�않습니다.�pop()�메서드에�의해�데이터

를�팝하는�부분에서�아무것도�출력이�되지� 않을�수�있습니다.

자바야�놀자� -�활용편

Java

22

실행 결과
....................
Push-하나 : A
.....................
...................
Push-하나 : B
Push-둘 : A
....................
....................
Push-하나 : C
Push-둘 : B
....................
Push-둘 : C

스택에 저장된 데이터는

....................

....................
Pop-하나 : C
Pop-둘 :
....................
Pop-하나 : B
....................
Pop-둘 :
....................
Pop-하나 : B
....................
Pop-둘 : A

1.3.2. 공유데이터�문제점의�해결(synchronized)

이와�같은�공유데이터�문제는�매우�심각하기�때문에�해결방안을�모색해야�하는데�문제의�

심각성에� 비해� 그렇게� 어렵지만은� 않습니다.� 먼저� 첫� 번째� 스레드가� push()� 메서드나�

pop()� 메서드를�호출하여�수행되는�동안�두�번째�스레드로�제어권이�넘어가지�않아야�합

니다.�또�다른�방법은�제어권이�두�번째�스레드로�넘어갔더라도,�첫�번째�스레드가�메서드

를�완전히�수행하지�않은�상태라면,�제어를�첫�번째�스레드에게�다시�넘겨주면�됩니다.�자

바에서는�두�번째� 방법을�사용하는데�이때�사용하는�키워드가� synchronized� 입니다.�

다음�프로그램은�앞의�예제�프로그램에� synchronized를�추가하여�공유데이터의�문제점을�

해결한�것입니다.� 앞에서�작성된� SharedData� 클래스�파일을�아래코드에서�진하게�된�부

분만�수정한�다음� SharedDataExample� 클래스로�실행시키세요.

exam/java/chapter06/thread/SharedData.java

1: package exam.java.chapter06.thread;
2:
3: public class SharedData {
4:

1
스레드�프로그래밍

Chapter

23

5: int index=0;
6: char[] stack = new char[6];
7:
8: public synchronized char push(char c) {
9: stack[index] = c;
10: longJob();
11: index++;
12: return c;
13: }
14:
15: public char pop() {
16: synchronized(this) {
17: index--;
18: longJob();
19: return stack[index];
20: }
21: }
22:
23: public void longJob() {
24: for(long i=0; i<20; i++) {
25: System.out.print(".");
26: }
27: System.out.println();
28: }
29: }

예제코드에서� push()� 메서드와� pop()� 메서드에서� synchronized를� 사용했습니다.�

synchronized� 키워드가� 두� 메서드에서� 서로� 다르게� 사용되었는데,� push()에서처럼� 사용

하는�것을�synchronized�method라하고,�pop()�메서드처럼�사용하는�것을�synchronized�

block이라고�합니다.� lock� flag를�필요로�하는�부분이�메서드�전체가�아니라면�필요한�부

분만�블록으로�설정해서�사용하는�것이�더�바람직합니다.� SharedDataExample�클래스를�

통해서�실행시키면�실행�결과는�다르게�나타날�수�있지만�중요한�것은�스택에�데이터가�모

두�푸시�되고�팝�된다는�것입니다.(pop()메서드에�의해�출력되는�데이터가�모두�존재합니

다.)

synchronized를�설명하기�위해�Object� Lock� Flag를�먼저�설명하기로�하겠습니다.�생성된�

모든�객체는� lock� flag를�가지고�있는데�스레드가� synchronized�메서드나�블록을�수행하

기�위해서는�반드시� lock� flag를� 가지고�있어야�합니다.� 다음� 그림을�살펴보세요.

자바야�놀자� -�활용편

Java

24

앞의�그림에서처럼�push()�메서드를�호출하면�스레드는�공유객체의�lock� flag가�있는지�확

인하고,�있으면� lock� flag를�가져간�후에�실행됩니다.�이렇게� lock� flag를�소유한�스레드에�

의해� push()� 메서드가�수행되다가�다른�스레드에게�제어권이�넘어가면�첫�번째�스레드는�

대기(block)�상태가�되고,�두�번째�스레드가�활동하기�시작할�것입니다.�그러나�두�번째�스

레드에서도�push()�메서드를�호출하면�synchronized�키워드로�인해�공유객체의� lock� flag

를�가져와야�실행될�수�있습니다.�그런데,� lock� flag는�이미�첫�번째�스레드에서�소유하고�

있기�때문에�두�번째�스레드에�의해�push()�메서드는�실행될�수가�없고.�두�번째�스레드는�

대기� 상태가� 됩니다.� 그동안� 제어권은� 다시� 첫� 번째� 스레드로� 넘어오게� 되고,� 멈춰있던�

push()� 메서드는�계속�수행하게�됩니다.� 첫�번째�스레드에�의해� push()� 메서드가�수행된�

후에는� lock� flag를�반납합니다.�그�후� � lock� flag가�반납되었기�때문에�대기하고�있던�두�

번째�스레드가�제어권을�넘겨받아�수행될�수�있습니다.�이처럼�synchronized�메서드�또는�

블록은�여러�스레드에�의해�공유데이터가�사용될�때�공유데이터가�스레드들로부터�데이터

의�일관성을�갖도록�해� 줄� 수� 있습니다.

다음�그림은�기본적인�스레드�상태도에�공유데이터�처리�부분을�추가한�것입니다.

1
스레드�프로그래밍

Chapter

25

앞의�그림을�보면�스레드�synchronized�메서드를�수행하면� lock� flag를�받을�때까지�Lock�

pool에서� 대기하게�되는�것을� 볼� 수� 있습니다.

1.3.3. wait()와�notify()

synchronized로�스레드의�기본적인�문제는�처리되었지만�해결해야할�문제가�더�남아있습

니다.� 앞에서�설명한�스택�예제�프로그램을�다시�살펴보기로�하겠습니다.� 만약�스택이�비

어있는�상태에서�pop()�메서드가�수행된다면�어떻게�될까요?�이때에는�synchronized로도�

해결할�수가�없습니다.� 이� 때� 사용되는�메서드가� wait()와� notify()입니다.

앞에서�작성된�코드를�푸시와�팝이�동시에�실행되도록� join()�메서드�호출�부분을�삭제(주

석처리해도�됩니다)한� 다음�실행시켜보세요.

exam/java/chapter06/thread/SharedDataExample.java

1: package exam.java.chapter06.thread;
2:
3: public class SharedDataExample {
4: public static void main(String[] args) {
5: SharedData sd = new SharedData();
6:
7: PushRunner pushr1 = new PushRunner("Push-하나�: ", sd);
8: PushRunner pushr2 = new PushRunner("Push-둘�: ", sd);
9:
10: Thread pusht1 = new Thread(pushr1);
11: Thread pusht2 = new Thread(pushr2);
12:
13: pusht1.start();
14: pusht2.start();
15:
16: // try {
17: // pusht1.join();

자바야�놀자� -�활용편

Java

26

18: // pusht2.join();
19: // } catch (InterruptedException e) {
20: // //nothing...
21: // }
22:
23: System.out.println("\n스택에�저장된�데이터는");
24:
25: PopRunner popr1 = new PopRunner("Pop-하나�: ", sd);
26: PopRunner popr2 = new PopRunner("Pop-둘�: ", sd);
27:
28: Thread popt1 = new Thread(popr1);
29: Thread popt2 = new Thread(popr2);
30:
31: popt1.start();
32: popt2.start();
33:
34: }
35: }

위�코드는�스레드� 4개를�실행시킵니다.�두�개의�스레드는�데이터를�푸시하고,�두�개의�스

레드는�데이터를�팝하고�있습니다.�16라인부터�21라인까지�주석처리�한�다음�코드를�실행

시키면�스레드� 4개가�경쟁적으로�실행될�것입니다.� 이� 클래스를�실행시키면�아주�드물게�

아래와�같은�예외가�발생하는�것을�볼�수�있습니다.�아래�결과는�이클립스에서�실행한�화

면입니다.�

위와�같은�예외가�발생하는�이유는�스택에�데이터가�존재하지�않을�때�팝�스레드에�의해�

데이터�팝이�일어날�경우입니다.� �

wait()와� notify()�에�대해�설명할�때에�생산자와�소비자�사이의�관계를�예로�설명하곤�합

니다.� �위의�예제를�수정하기�전에�생산자/소비자�문제에�대하여�설명하기�위해�다음�그림

을�보면서�설명하겠습니다.

1
스레드�프로그래밍

Chapter

27

생성할�스레드의�수는�모두� 6개(생산자� 3개,�소비자� 3개)입니다.�각각의�스레드가�공유데

이터�영역(BakeStack)을�공유하고�있습니다.�생산자가�푸시�하여�데이터를�생산하면,�소비

자는�팝�하여�데이터를�소비합니다.�그런데�생산자가�데이터를�푸시하기�전�또는�팝�할�데

이터가�없을�때�소비자가�데이터를�팝�하려고�할�경우가�있습니다.�소비자�팝�할�데이터가�

없을�때�팝을�하도록�한다면�예외가�발생할�수도�있습니다.�그래서�팝�할�데이터가�없다면�

소비자에게�생산자가�데이터를�푸시�할�때까지�기다리도록�해야�할�것입니다(wait).� 그리

고�생산자는�데이터를�푸시하면�소비자에게�데이터가�푸시�되었음을�알려주어야�할�것입니

다(notify).

이�6개의�스레드는�서로�경쟁하면서�실행되는데�공유데이터�영역인�스택을�깨뜨리지�않고,�

푸시� 된� 데이터가�남아서도�안� 되고� 모자라서도�안�됩니다.

다음�그림은�스레드의�상태도에� wait()와� notify()메서드를�추가한�결과를�나타낸�것입니

다.

다음은�앞에서�작성된�SharedData�클래스를�수정하여�푸시와�팝�스레드가�동시에�실행되

어도�예외가�발생하지�않도록�한� 코드입니다.

exam/java/chapter06/thread/SharedData.java

1: package exam.java.chapter06.thread;
2:
3: public class SharedData {
4:
5: int index=0;
6: char[] stack = new char[6];
7:
8: public synchronized char push(char c) {
9: notify();
10: stack[index] = c;
11: longJob();
12: index++;

자바야�놀자� -�활용편

Java

28

13: return c;
14: }
15:
16: public char pop() {
17: synchronized(this) {
18: if(index==0) {
19: try {
20: wait();
21: } catch (InterruptedException e) {
22: System.out.println(e.getMessage());
23: }
24: } else {
25: index--;
26: }
27: longJob();
28: return stack[index];
29: }
30: }
31:
32: public void longJob() {
33: for(long i=0; i<20; i++) {
34: System.out.print(".");
35: }
36: System.out.println();
37: }
38: }

SharedData� 클래스를� 수정한�다음� SharedDataExample� 클래스를�실행시켜�보세요.� 이

제�스택에�데이터가�없을�때�팝을�시도하더라도�예외가�발생하지�않습니다.� pop()�메서드

에서�스택에�데이터가�없을�경우(index가� 0일�경우)�wait()� 메서드를�호출했습니다.�그리

고� push()� 메서드에서� notify()� 메서드에� 의해� 데이터가� 푸시� 되었음을� 알려주고� 있습니

다.�그런데�push()�메서드에서는�데이터를�푸시하기�전에�notify�하고�있습니다.�데이터를�

푸시�한�다음�notify�해야�할�것�같지만�push()�메서는�synchronized�로�선언되어�있으므

로� notify를� 먼저� 해도� wait� 했던� 스레드가� 곧바로� 실행되지� 않습니다.� 푸시하기� 전에�

notify�하면�wait하는�스레드는�바로�실행이�되는�것이�아니고� Lock� flag를�다시�얻기�위

해� Lock� pool에서�대기합니다.

API문서에서� Thread� 클래스를� 보면� stop(),� resume(),� suspend()� 등의� 메서드가�

deprecation되어�있는�것을�볼�수�있습니다.�그�이유는�이들�메서드는� lock� flag를�가지고�

있는� 상태에서� 봉쇄된� 후� 스레드가� 비정상적으로� 종료되었을� 경우� lock� flag를� 반납하지�

못하고�종료되므로� lock� flag를�필요로�하는�다른�스레드가� lock� flag를�얻을�수�없는�상태

에�빠지는�데드락(Deadlock)이� 발생할�수� 있기�때문입니다.

앞의�wait()와�nitofy()를�설명하는�스레드�상태도�그림에서�wait()와�notify()에�의해�스레

드의�상태를�분리하여�Wait�pool로�표시한�이유는�wait()�메서드에�의해�스레드가�봉쇄될�

1
스레드�프로그래밍

Chapter

29

때에는� lock� flag를�반납하고�봉쇄되기�때문입니다.�Wait� pool에�있던�스레드는� notify()�

메서드가�호출되면�반납했던� lock� flag를�다시� 얻기� 위해� Lock� pool로� 빠지게�됩니다.

다음에�설명되는�예제들은�생산자/소비자�문제의�다른� 예입니다.�

모두�4개의�클래스(WaitNotifyExample,�BakeStack,�Baker,�Customer)를�작성했습니다.�

실행은�WaitNotifyExample� 클래스를�이용합니다.

exam/java/chapter06/thread/WaitNotifyExample.java

1: package exam.java.chapter06.thread;
2:
3: public class WaitNotifyExample {
4: public static void main(String[] args) {
5: BakeStack bakeStack = new BakeStack();
6:
7: Baker m1 = new Baker(bakeStack);
8: Thread maker1 = new Thread (m1);
9: maker1.start();
10: Baker m2 = new Baker(bakeStack);
11: Thread maker2 = new Thread (m2);
12: maker2.start();
13: Baker m3 = new Baker(bakeStack);
14: Thread maker3 = new Thread (m3);
15: maker3.start();
16:
17: Customer c1 = new Customer(bakeStack);
18: Thread customer1 = new Thread (c1);
19: customer1.start();
20: Customer c2 = new Customer(bakeStack);
21: Thread customer2 = new Thread (c2);
22: customer2.start();
23: Customer c3 = new Customer(bakeStack);
24: Thread customer3 = new Thread (c3);
25: customer3.start();
26: }
27: }

5라인은�공유데이터인� BakeStack� 클래스의�객체(instance)를� 만듭니다.

7라인부터� 15라인은� 3개의� Baker� 클래스� 객체를� 만들고� 이를� 스레드화하여� 실행시킵니

다.� 이들� 스레드는�생산자�스레드입니다.

17라인부터�25라인은�3개의�Customer�클래스�객체를�만들고�이를�스레드화하여�실행시

킵니다.� 이들� 스레드는�소비자�스레드입니다.

모두� 6개의� 스레드가�하나의�공유데이터(BakeStack)를� 사용하고�있습니다.

이제�공유데이터인� BakeStack을� 살펴보겠습니다.

exam/java/chapter06/thread/BakeStack.java

1: package exam.java.chapter06.thread;
2:

자바야�놀자� -�활용편

Java

30

3: import java.util.Vector;
4: public class BakeStack {
5: private Vector buff = new Vector(10, 10);
6:
7: public synchronized String pop() {
8: String bread;
9: while (buff.size() == 0) {
10: try {
11: this.wait();
12: } catch (InterruptedException e) {
13: e.printStackTrace();
14: }
15: }
16: bread = (String)buff.remove(buff.size() - 1);
17: return bread;
18: }
19: public synchronized void push(String bread) {
20: this.notify();
21: buff.addElement(bread);
22: }
23: }

5라인에서는�스택을�좀� 더� 쉽게�구현하기�위해� Vector클래스를�사용했습니다.

9라인에서는�buff.size()가�0�이면�while문을�수행하는데�이는�스택이�비어�있음을�의미합

니다.�while문안에�wait()�메서드가�있는데�누군가�깨워줄�때까지�수행을�멈추겠다는�의미

입니다.� 여기서� synchronized를� 사용해서� lock� flag를� 가져왔으나,� wait()가� 호출되면�

lock� flag는�반납됩니다.� 그래야�다른� 스레드가� pop()를� 호출할�수�있기� 때문입니다.�

16라인은�스택이�비어있지�않으면�remove()�메서드를�호출해�빵을�스택에서�꺼내�넘겨줍

니다.

20라인�notify()�메서드를�호출합니다.�notify()�메서드는�대기�중인�스레드�중에서�하나를�

임의로�선택하여�빵이�도착했다는�신호를�줍니다.�그러면�신호를�받은�스레드는�빵을�소비

하게�됩니다.�이때�유의할�점은�notify()�메서드가�대기�중인�스레드에게�신호를�보내면�곧

바로�대기�중인�스레드가�동작하지는�않는다는�것입니다.� 물론�동작할�수도�있지만,� 결정

은�스레드�Scheduler에게�달려있으므로�push()가�몇�번�더�수행된�후에�대기�중인�스레드

가�수행될�수� 도� 있습니다.

21라인은�addElement()�메서드를�호출하여�스택에�빵을�가져다�놓는�것입니다.�여기서의�

의문사항은� addElement()보다� notify()를�먼저�실행하도록�했다는�것입니다.�즉,�빵을�가

져다�놓기�전에�빵이�왔다는�신호를�한�것입니다.�이�의문점은� synchronized와�연관시켜�

생각하면�쉽게�알� 수� 있을� 것입니다.

이제� 마지막으로� 각각의� 러너클래스들에� 대해서� 알아보기로� 하겠습니다.� 먼저� push()를�

수행할� Baker� 클래스입니다.

exam/java/chapter06/thread/Baker.java

1: package exam.java.chapter06.thread;
2:

1
스레드�프로그래밍

Chapter

31

3: public class Baker implements Runnable {
4: private BakeStack bakeStack;
5: private int num;
6: private static int counter = 1;
7: public Baker (BakeStack s) {
8: bakeStack = s;
9: num = counter++;
10: }
11: public void run() {
12: String bread;
13: for (int i = 0; i < 10; i++) {
14: bread = getBread();
15: bakeStack.push(bread);
16: System.out.println("빵집" + num + " : " + bread);
17: try {
18: Thread.sleep((int)(Math.random()*300));
19: } catch (InterruptedException e) {
20: e.printStackTrace();
21: }
22: }
23: }
24: public String getBread() {
25: String bread = null;
26: switch ((int)(Math.random() * 3)) {
27: case 0 :
28: bread = "생크림�케잌";
29: break;
30: case 1:
31: bread = "식빵";
32: break;
33: case 2:
34: bread = "고로케";
35: break;
36: }
37: return bread;
38: }
39: }

Runnable인터페이스를� implements한� 전형적인� 클래스이며,� 11라인의� run()� 메서드가�

스레드에�의해�수행됩니다.� 14라인에서는�getBread()�메서드를�호출하여�3개의�빵�중�하

나를�반환합니다.� 총� 10� 개의� 빵을� 만들어�냅니다.� 18라인은� sleep()� 메서드를�이용하여�

스레드를�잠깐�정지시켰는데�컴퓨터�속도가�너무�빨라�순간적으로�처리되기�때문에�일부러�

다른� 스레드에게�기회를�주기� 위해서�잠깐� 쉬게�하는� 것입니다.

다음은� Customer클래스입니다.� 이�클래스도�앞의� Baker클래스와�거의�유사합니다.

exam/java/chapter06/thread/Customer.java

1: package exam.java.chapter06.thread;
2:

자바야�놀자� -�활용편

Java

32

3: public class Customer implements Runnable {
4: private BakeStack bakeStack;
5: private int num;
6: private static int counter = 1;
7: public Customer (BakeStack s) {
8: bakeStack = s;
9: num = counter++;
10: }
11: public void run() {
12: String bread;
13: for (int i = 0; i < 10; i++) {
14: bread = bakeStack.pop();
15: System.out.println("손님" + num + " : " + bread);
16: try {
17: Thread.sleep((int)(Math.random()*300));
18: } catch (InterruptedException e) {
19: e.printStackTrace();
20: }
21: }
22: }
23: }

이�클래스는�공유�스택에서�빵을�10번�가져와�화면에�보여줍니다.�Baker클래스와�같은�내

용이므로�설명은�생략하겠습니다.

1
스레드�프로그래밍

Chapter

33

1.4. 요점�정리

1.�스레드

최소�수행�단위

Runnable�인터페이스를� implements한�후� run()메서드에�스레드가�수행할�코드를�작성

2.�스레드�상태

3.�스레드�클래스�메서드

스레드�우선순위�:� 1(가장�낮음)~10(가장�높음),�디폴트�5

setPriority(),� getPriority()� :�우선순위를�변경하거나�알아보는�메서드

sleep(ms)� :�스레드의�실행을�잠시�멈추게�함

join()� :� join�이후� start�되는�스레드는� join�한�스레드가�종료해야�실행됨

yield()� :�같은�우선순위를�가진�다른�스레드에게�먼저�프로세스를�점유하도록�함

4.�공유데이터

자바야�놀자� -�활용편

Java

34

synchronized,� wait()�와� notify()

35

2. 네트워크�프로그래밍

이번�장에서는�TCP방식의�네트워크�프로그래밍과�UDP방식의�프로그램에�대하여�

설명합니다.�통신을�하기�위한�기본적인�개념과�관련�클래스들에�대해�알아보겠습

니다.�자실�자바로�네트워크�프로그램을�만들�일은�거의�없을지도�모릅니다.�왜냐

하면�자바는�WAS(Web�Application�Server)를�이용해�대부분의�서비스를�제공하

니까요.�그러나�최소한의�네트워크프로그래밍�관련�API는�알아두는�것이�좋습니다.

주요�내용입니다.

� -� TCP�네트워크�프로그래밍

�-�UDP�네트워크�프로그래밍

�-�채팅�프로그램�샘플�1

� -�채팅�프로그램�샘플�2

� -�파일�서버프로그램�샘플

자바야�놀자� -�활용편

Java

36

네트워크에는�소켓(Socket)이� 있는데�소켓은�다음� 그림에서처럼�어떤�프로그래밍�모델에

서�프로세스�사이의�통신�종단점을�의미합니다.�

통신이� 이루어지려면� 먼저� 연결설정을� 하고� 주소를� 지정해야� 합니다.� 연결을� 설정하려면�

한쪽�컴퓨터(서버)는� 연결을�대기하는�프로그램을�실행해야�하고,� 다른� 쪽� 컴퓨터(클라이

언트)는�서버로�연결을�시도해야�합니다.�이때�클라이언트가�서버에�연결되려면�서버주소

와� 포트번호를� 알아야� 합니다(포트� :� 하나의� 서버에서� 다른� 네트워크� 서비스를� 제공하기�

위해서�사용).� 포트번호는� TCP/IP시스템에서는� 16비트�크기를�가지며�범위는� 0∼65535�

사이의�값을�가질�수�있지만�1023번�이하의�포트(0∼1023)�번호는�시스템이�미리�지정된�

서비스용(http� :� 80,� ftp� :� 21�등)으로�사용하기�때문에� 1023번�이하의�포트번호는�사용

하지�않는�것이�좋습니다.

통신방법은�여러�가지가�있지만�자바에서는�크게� TCP�통신과�UDP통신으로�나눌�수�있습

니다.

2.1. TCP�네트워크�프로그램

TCP�통신은�가장�많이�이용하는�통신�방식으로�“양방향의�스트림�통신을�제공하는,�신뢰성�

있는�연결�지향형�통신방식”을�의미합니다.�양방향은� “클라이언트와�서버가�동시에�존재해

야만� 통신이� 이루어짐”을� 의미하고,� 신뢰성은� “양단에서� 데이터를� 주고받을� 때� 데이터의�

손실�없이�정확히�주고받을�수�있음”을�의미합니다.� 연결�지향형은� “클라이언트와�서버가�

상호�연결되어야�비로소�통신이�이루어짐”을�의미합니다.�TCP/IP�소켓�연결은� java.net�패

키지의�클래스를�사용하여�구현합니다.

다음�그림은�서버와�클라이언트에서�어떤�일이�일어나는�지를�보여주는�그림입니다.�그림

에서�서버는� java.net�패키지의� ServerSocket클래스를�이용하여�포트�번호를�할당합니다.�

클라이언트가� 소켓객체를� 생성하여�연결을�요청하면�서버는� accept()� 메서드를�사용하여�

소켓을�열어주고,� 클라이언트는�서버주소의�포트번호로�연결을�요청합니다.

2
네트워크�프로그래밍

Chapter

37

서버와�클라이언트의�프로세스가�정보를�교환할�때�스트림모델을�사용하는데,�이�때�소켓

에는�두�개의�스트림�즉,�입력스트림(InputStream)과�출력스트림(OutputStream)이�들어�

있습니다.�임의의�프로세스가�다른�프로세스에게�데이터를�보내려면�소켓과�연관된�출력스

트림에�기록하면�되고,�상대측�프로세서가�데이터를�읽을�때도�소켓과�연관된�입력�스트림

을�읽기만하면�됩니다.

2.1.1. TCP�서버

TCP/IP� 서버� 응용� 프로그램은� ServerSocket과� Socket� 네트워크� 클래스를� 이용합니다.�

ServerSocket클래스는�서버를�설정하는�일을�합니다.�서버에서는�서버소켓을�생성한�다음�

클라이언트의�접속을�대기해야�합니다.�그리고�클라이언트가�접속되면�서버에서는�임의의�

소켓을� 생성하여� 클라이언트와� 통신해야� 합니다.� 그러기� 위해서� 서버에서는� 다른� 두개의�

소켓을�선언해야�하는데,�그�이유를�알아보기�위해�다음�그림을�참고로�설명하기로�하겠습

니다.

서버는� 동시에� 여러� 클라이언트를�수용할� 수� 있어야�합니다.� 따라서� 앞의� 그림처럼�여러�

클라이언트가� 서버에� 접속하고� 이를� 처리할� 있도록� ServerSocket를� 열어둡니다.� 이것은�

일종의� Listener역할을�수행합니다.(접수창구정도로�이해하면�됩니다.)�

� �①� ServerSocket은� 클라이언트의� 접속을� 기다리고� 있고� 클라이언트는� ServerSocket으로� 접속을�

시도합니다.�

� �②� ServerSocket과�클라이언트� Socket의�접속이�이루어지면,� ServerSocket은�새로운�Socket을�생

성해서�클라이언트의�요청을� 처리하도록�합니다.� 그런�다음� ServerSocket은� 다시�다른� 클라이

언트의�요청을�기다립니다.�

자바야�놀자� -�활용편

Java

38

이러한�방식을�이용하기�때문에�서버에서는�여러�클라이언트의�요청을�처리할�수�있는�것

입니다.�

다음� 코드는�통신에�필요한�서버의�역할을�작성한�예입니다.

exam/java/chapter09/tcp/SimpleServer.java

1: package exam.java.chapter09.tcp;
2:
3: import java.net.*;
4: import java.io.*;
5:
6: public class SimpleServer {
7: public static void main(String args[]) {
8: String[] messages = {
9: "누가�당신을�시비거리에�올려놓고�있습니다. 강한�반발이�예상됩니다.",
10: "새로운�일을�시작하기는�좋으나�처음부터�무리한�계획은�자제하세요.",
11: "주변에�누군가가�당신을�좋아합니다. 주위를�천천히�돌아보세요.",
12: "편안한�마음으로�생활할�수�있지만, 저녁에�사소한�고민거리가�생깁니다.",
13: "어려운�일에�처한다고�당황하지�마세요. 곧�일의�실마리를�찾을�수�있습니다."
14: };
15:
16: ServerSocket serverSocket = null;
17:
18: try {
19: serverSocket = new ServerSocket(5432);
20: } catch (IOException e) {
21: e.printStackTrace();
22: }//end try~catch
23:
24: while (true) {
25: int rand = (int)(Math.random() * messages.length);
26: try {
27: System.out.println("사용자의�접속을�기다립니다.");
28: Socket newSocket = serverSocket.accept();
29:
30: System.out.println(newSocket.getRemoteSocketAddress() + "에서�

접속.");
31:
32: OutputStream os = newSocket.getOutputStream();
33: DataOutputStream dos = new DataOutputStream(os);
34: dos.writeUTF(messages[rand]);
35:
36: dos.close();
37: newSocket.close();
38: System.out.println("사용자의�접속을�종료합니다.");
39: } catch (IOException e) {
40: e.printStackTrace();
41: }//end try~catch
42: }//end while

2
네트워크�프로그래밍

Chapter

39

43: }//end main()
44: }//end class

이�예제는�사용자와의�접속을�지속적으로�유지하지�않습니다.�클라이언트가�접속하면�서버

에서는�메시지를�보내주고�클라이언트와의�연결을�닫습니다.

16라인에서� 서버소켓을� 선언하고(ServerSocket)� 19라인에서� ServerSocket을� 만들고,�

ServerSocket생성자의� 인자는� 포트번호를� 부여합니다.� 즉,� “서버가� 5432번� 포트를� 열고�

클라이언트의�접속을�기다립니다.”

25라인에서는�while� 문이�무한�반복을�하는데,�이는�서버�프로그램을�계속�수행시키겠다

는�의미입니다.�

28라인에서는�serverSocket.accept()를�호출했는데,�이때�서버는�클라이언트가�접속할�때

까지�대기하게�됩니다.�클라이언트가�접속하면,� accept()메서드는�새로운�소켓이�생성하여�

반환합니다.

32라인에서는� 소켓으로부터� 출력스트림을� 얻어옵니다.� 그리고� 이를� 이용해� 33라인에서�

필터스트림인�DataOutputStream을�생성하고,�이를�통해�34라인에서�writeUTF()�메서드

를�호출해�정해진�메시지�중�하나를�소켓을�통해�출력합니다.�이렇게�저장한�문자열은�다

음그림의�경로를�따라�클라이언트로�전송된다.�

2.1.2. TCP�클라이언트

클라이언트�프로그램은�위의�서버처럼�복잡하지�않습니다.�그리고�서버에�접속한�후�전송

되는�데이터는�모두�문자열�타입으로�전송된다는�사실을�기억하고�프로그래밍�해야�합니

다.� (이를�프로토콜이라고�하며�일종의�서버와�클라이언트간의�통신규약�즉,�약속을�의미합

니다.)

다음� 프로그램은�통신에�필요한�클라이언트의�역할을�작성한�예입니다.�

exam/java/chapter09/tcp/SimpleClient.java

1: package exam.java.chapter09.tcp;
2:

자바야�놀자� -�활용편

Java

40

3: import java.net.*;
4: import java.io.*;
5:
6: public class SimpleClient {
7: public static void main(String args[]) {
8: try {
9: Socket newSocket = new Socket("127.0.0.1", 5432);
10: InputStream is = newSocket.getInputStream();
11: DataInputStream dis = new DataInputStream(is);
12: System.out.println(dis.readUTF());
13: dis.close();
14: newSocket.close();
15: } catch (ConnectException connExc) {
16: System.err.println("서버연결�실패");
17: } catch (IOException e) {
18: e.printStackTrace();
19: }
20: }
21: }

9라인에서는�클라이언트도�소켓을�생성해야하므로�Socket객체를�만들었습니다.�이때�생성

자의� 인자로� 서버의� IP� 주소와� 포트번호를� 지정하고� 있습니다.� 127.0.0.1은� 루프백

(loopback)�주소를�의미하며,�자신�컴퓨터의� IP�주소를�가리킬�때�사용합니다(이렇게�지정

한�이유는�서버측�프로그램도�자기�컴퓨터에서�수행되기�때문입니다.).� 포트번호� 5432를�

기술한�이유는�서버에서�서버소켓을�오픈할�때� 5432번으로�포트를�지정했기�때문입니다.�

만약�다른�포트로�지정한다면�서버에�연결되지�않습니다.�9라인이�실행되면�서버에�연결됩

니다.� 작성된� 코드대로라면� 서버와� 연결되면� 연결과� 동시에� 서버는� 문자열을� 클라이언트�

소켓으로�보냅니다.�즉,�접속하는�순간�서버는�문자열을�보내고�클라이언트는�이�문자열을�

소켓에서�읽기만�하면�됩니다.�

10라인에서는� 소켓에서� InputStream� 객체를� 얻고,� DataInputStream을� 통해� 문자열을�

읽을�준비를�합니다.

12라인의� readUTF()� 메서드를�통해� 문자열을�읽어�화면에�출력합니다.

앞의�예제�프로그램을�실행시키려면�명령프롬프트�창에서�서버용�프로그램을�실행시킨�다

음�다른� 명령프롬프트�창에서�클라이언트를�실행하면�결과를�볼�수�있습니다.

java SimpleServer

java SimpleClient

2.1.3. 간단한�채팅

2
네트워크�프로그래밍

Chapter

41

다음� 코드는� 스레드를� 사용하여� 1대1� 채팅하는� 예입니다.� 이� 예제는� 3개의� 클래스�

ChatServer,� Sender,�Receiver로�구성되어�있습니다.�그�중에서�Sender�클래스는�입력한�

내용을�보내는�클래스이며,�Receiver�클래스는�상대방으로부터�전달된�메시지를�화면에�뿌

리는�클래스입니다.

exam/java/chapter09/tcp/SimpleChatServer.java

1: package exam.java.chapter09.tcp;
2:
3: import java.io.DataInputStream;
4: import java.io.DataOutputStream;
5: import java.io.IOException;
6: import java.net.ServerSocket;
7: import java.net.Socket;
8:
9: import javax.swing.JOptionPane;
10:
11: public class SimpleChatServer {
12: public static void main(String[] args) {
13: ServerSocket server = null;
14: int port = 7777;
15:
16: try {
17: server = new ServerSocket(port);
18: Receiver receiver = new Receiver(server);
19:
20: Sender sender = new Sender(port);
21:
22: Thread rt = new Thread(receiver);
23: Thread st = new Thread(sender);
24:
25: rt.start();
26: st.start();
27: }catch(IOException e) {
28: System.out.println(e.getMessage());
29: }
30: }
31: }
32:
33: class Sender implements Runnable {
34: String ip = "127.0.0.1";
35: int port;
36:
37: public Sender(int port) {
38: this.port = port;
39: }
40:
41: public void run() {
42: while(true) {

자바야�놀자� -�활용편

Java

42

43: Socket socket = null;
44: DataOutputStream dos = null;
45: try {
46: String message = JOptionPane.showInputDialog("메시지를�입력하세요.");
47: if(message==null) {
48: System.exit(0);
49: }
50:
51: socket = new Socket(ip, port);
52: dos = new DataOutputStream(socket.getOutputStream());
53:
54: dos.writeUTF(message);
55: System.out.println("보낸�메시지: " + message);
56: } catch(Exception e) {
57: e.printStackTrace();
58: } finally {
59: if(socket!=null) try{socket.close();}catch(Exception e) {}
60: if(dos!=null) try{dos.close();}catch(Exception e) {}
61: }
62: }
63: }//end run()
64: }//end Sender
65:
66: class Receiver implements Runnable {
67: ServerSocket server;
68: public Receiver(ServerSocket server) {
69: this.server = server;
70: }
71: public void run() {
72: while(true) {
73: Socket socket = null;
74: DataInputStream dis = null;
75: try {
76: socket = server.accept();
77: dis = new DataInputStream(socket.getInputStream());
78:
79: String message = dis.readUTF();
80: System.out.println(socket.getInetAddress() + ":" + message);
81: } catch(Exception e) {
82: e.printStackTrace();
83: } finally {
84: if(socket!=null) try{socket.close();}catch(Exception e) {}
85: if(dis!=null) try{dis.close();}catch(Exception e) {}
86: }
87: }
88: }//end run()
89: }//end Receiver

2
네트워크�프로그래밍

Chapter

43

상대방에게�전달하고�싶은�메시지를�입력한�다음�확인�버튼을�누르세요.�프로그램을�종료

하고�싶으면�취소�버튼을�누르세요.�29라인의�아이피를�수정하면�실제�상대방과�대화를�할�

수�있습니다.� 대화�내용을�콘솔화면에�나타납니다.� 이클립스에서�실행하면� Console� 탭에�

채팅� 내용이�나타납니다.

자바야�놀자� -�활용편

Java

44

2.2. UDP�네트워크�프로그램

TCP/IP가� 연결� 중심의� 프로토콜이라면� UDP(User� Datagram� Protocol)� 통신방식은� "비�

신뢰적,�비�연결지향형�통신"이라고�할�수�있습니다.� TCP�통신과는�달리�우편과�유사합니

다.�TCP에서는�전화를�사용하는�것처럼�메시지를�순서대로�보내고�받을�수�있지만�UDP는�

보낸�순서와�받는�순서가�다를�수�있습니다.�또�상대방의�주소가�잘못되면�데이터가�잘못�

전달되거나�아예�데이터를�읽지�못할� 수도� 있습니다.

UDP는� DatagramSocket과� DatagramPacket이라는�두�개의�클래스를�지원합니다.�패킷

은�송신자의�정보와�메시지길이,� 메시지�등으로�구성되는�독립적인�메시지�단위입니다.

2.2.1. DatagramPacket

DatagramPacket에는�다음�네�가지의�생성자가�있는데,� 2개는�데이터를�수신하는데�사용

하고�나머지� 2개는�데이터를�보내는데�사용합니다.

�DatagramPacket(byte[]� buf,� int� length)
� � ��DatagramPacket(byte[]� buf,� int� offset,� int� length)�
-�UDP�패킷을�수신할�수�있도록�바이트�배열을�설정합니다.�생성자로�사용되는�바이트�배열은�비워

두고,�읽을�바이트의�크기를�설정합니다.�이때�배열의�크기보다�작게�지정합니다.

�DatagramPacket(byte[]� buf,� int� length,� InetAddress� address,� int� port)�
�DatagramPacket(byte[]� buf,� int� offset,� int� length,� InetAddress� address,� int� port)�
-�전송할�수�있도록�UDP�패킷을�설정하는�데�사용합니다.

2.2.2. DatagramSocket

DatagramSocket은� UDP�패킷을�읽고�쓰는데�사용합니다.� 이�클래스에는�연결할�포트와�

인터넷�주소를�지정하는데�사용하는�세� 개의�생성자를�가지고�있습니다.

�DatagramSocket()�
-�로컬�호스트에서�이용할�수�있는�포트로�연결합니다.

�DatagramSocket(int� port)�
-�로컬�호스트에서�지정된�포트로�연결합니다.

�DatagramSocket(int� port,� InetAddress� laddr)�
-�지정된�주소의�지정된�포트�번호로�연결합니다.

2
네트워크�프로그래밍

Chapter

45

다음�프로그램은� UDP방식을�이용하여�메신저�프로그램을�만든�예입니다.

exam/java/chapter09/udp/Messenger.java

1: package exam.java.chapter09.udp;
2:
3: import java.awt.*;
4: import java.awt.event.*;
5: import java.io.*;
6: import java.net.*;
7:
8: public class Messenger implements Runnable, ActionListener {
9:
10: private Frame f;
11: private TextArea outputArea;
12: private TextField addressField, inputField;
13:
14: private DatagramSocket server, client;
15: private DatagramPacket sinData, soutData;
16:
17: private byte[] data = new byte[500];
18:
19: public Messenger() {
20: try {
21: server = new DatagramSocket(8000);
22: client = new DatagramSocket(7000, InetAddress.getLocalHost());
23: }catch(IOException e) {
24: e.printStackTrace();
25: }
26: } //end of constructor
27:
28: public static void main(String[] args) {
29: Messenger m = new Messenger();
30: m.go();
31: Thread t = new Thread(m);
32: t.start();
33: } //end of main
34:
35: public void go() {
36: try {
37: f = new Frame(InetAddress.getLocalHost().getHostAddress());
38: }catch(UnknownHostException e) {
39: e.printStackTrace();
40: }
41: f.addWindowListener(new WindowAdapter() {
42: public void windowClosing(WindowEvent e) {
43: System.exit(0);
44: }
45: });
46:
47: outputArea = new TextArea();

자바야�놀자� -�활용편

Java

46

48: outputArea.setEditable(false);
49:
50: addressField = new TextField();
51: inputField = new TextField();
52:
53: inputField.addActionListener(this);
54:
55: Panel p1 = new Panel();
56: p1.setLayout(new BorderLayout());
57: p1.add(new Label("Address"), BorderLayout.WEST);
58: p1.add(addressField, BorderLayout.CENTER);
59:
60:
61:
62: Panel p2 = new Panel();
63: p2.setLayout(new BorderLayout());
64: p2.add(new Label("Message"), BorderLayout.WEST);
65: p2.add(inputField, BorderLayout.CENTER);
66:
67: f.add(p1, BorderLayout.NORTH);
68: f.add(outputArea, BorderLayout.CENTER);
69: f.add(p2, BorderLayout.SOUTH);
70:
71: f.setSize(300,200);
72: f.setVisible(true);
73: } //end of go
74:
75: public void actionPerformed(ActionEvent e) {
76: String mssg = inputField.getText();
77: String ip = addressField.getText();
78:
79: outputArea.append(">> " + mssg+"\n");
80:
81: InetAddress inet = null;
82: soutData = null;
83:
84: try {
85: inet = InetAddress.getByName(ip);
86:
87: soutData = new DatagramPacket(mssg.getBytes(),

mssg.getBytes().length, inet, 8000);
88:
89: client.send(soutData);
90: } catch(Exception ex) {
91: ex.printStackTrace();
92: }
93:
94: inputField.setText("");
95:
96: if(ip==null) {

2
네트워크�프로그래밍

Chapter

47

97: try {
98: ip = InetAddress.getLocalHost().getHostName();
99: }catch(UnknownHostException ex) {
100: ex.printStackTrace();
101: }
102: }
103: } //end of actionPerformed
104:
105: public void run() {
106: while(true) {
107: sinData = new DatagramPacket(data, data.length);
108:
109: try {
110: System.out.println("8000번�포트로�대기중...");
111: server.receive(sinData);
112: }catch(IOException e) {
113: e.printStackTrace();
114: }
115:
116: String addr = sinData.getAddress().getHostName();
117: String rsvData = new String(sinData.getData(), 0,

sinData.getLength());
118:
119: outputArea.append("[" + addr + "]" + rsvData + "\n");
120: } //end of while
121: } //end of run
122:} //end of class

자바야�놀자� -�활용편

Java

48

2.3. TCP�채팅�프로그램�Ⅰ

TCP를�이용하여�채팅�프로그램을�만들어�보겠습니다.�먼저�채팅�프로그램의�원리를�이해

하기�위해�다음의�그림을�설명하기로�합니다.

약간�복잡한�그림으로�이�내용을�프로그램으로�옮겨도�상당히�복잡하기�때문에�그림을�충

분히�이해를�한�후�프로그램을�이해하시기�바랍니다.�

ⓐ의� ChatServer는� 대화방(chatting� room)을�관리할�수� 있는� 구조를�갖습니다.(물론�이�

예제에서는�단순하게�대기실�한�곳에서�chatting을�하도록�구현했습니다.�이�코드를�더�발

전시키면� 방을� 만들� 수� 있을� 것입니다.)� RoomManager라는� 클래스가� 방을� 관리하는데�

이를�위해�Vector�클래스를�사용하였습니다.�그�다음� Room이라는�클래스는�대화방에�속

해�있는� 대화자를�관리하는데,� 역시� Vector� 클래스를�통해�관리합니다.

ⓒ의� Chatter� 클래스는�대화자가�접속하면�인스턴스가�서버에�자동으로�생성되며�접속된�

대화자의� 모든� 정보를� 관리합니다.� Chatter� 클래스에는� 소켓을� 가지고� 있는데,� 실제�

ChatterClient(ⓑ)의� 소켓과� 연결되어� 있습니다.� ChatterClient가� 메시지를� 보내면,�

Chatter�클래스의�소켓에�전달되고,�이를�기다리던�스레드(①)는�데이터를�읽어서�대화방

에�있는�다른� 대화자에게�메시지를�전달하게�되는�것입니다.

ⓑ의의�ChatClient는� 2개의�스레드가�있습니다.�먼저�②의�스레드는�대화자로부터�메시지

를�입력받습니다.�그런데�키보드에서�입력받고�있는�동안�다른�대화자가�메시지를�보내는�

것을�수신하기�위해�스레드를�이용해서�해결해야�합니다.�이는�입력하는�동안�출력을�담당

하는�스레드(③)가�소켓을�감시하면�해결할�수�있습니다.� 소켓에�메시지가�도착하면�이를�

화면에�출력하는데�스레드를�이용하지�않는다면�글을�쓰는�도중에�상대방이�보낸�메시지를�

읽을�수� 없을� 것입니다.

2
네트워크�프로그래밍

Chapter

49

2.3.1. ChatServer.java

어려운�코드는�아니지만,�그렇게�쉬운�코드도�아닙니다.�먼저�ChatServer부터�프로그램을�

설명하기로�하겠습니다.

exam/java/chapter09/tcp/ChatServer.java

1: package exam.java.chapter09.tcp;
2:
3: import java.io.*;
4: import java.net.*;
5: import java.util.*;
6:
7: public class ChatServer {
8:
9: public static void main(String [] args) {
10:
11: System.out.println("Chatting Server Starting.");
12:
13: int portNo = 5555;
14:
15: if (args.length == 1) {
16: portNo = Integer.parseInt(args[0]);
17: }
18:
19: ChatManager cm= new ChatManager(portNo);
20: }
21:
22: }

앞의�ChatServer�프로그램이�전부는�아닙니다.�이�부분은�서버를�실행시키기�위해�포트번

호를� 입력받고,� 서버의� 모든� 대화를� 담당할� ChatManager� 객체를� 만듭니다.� 그리고�

CharManager의� 인자로�서버의�포트번호를�명령행인자로�받아�넘겨줍니다.

이�프로그램은�다음에�있는� 코드들을�모두�작성해야�실행이�가능합니다.

다음�프로그램은�채팅서버에�접속하는�채팅사용자�클래스입니다.� Chatter� 클래스는�실제�

접속한�대화자의�정보를�가지고�있습니다.�

23: class Chatter {
24: private Socket clientSocket;
25: private BufferedReader br;
26: private PrintWriter pw;
27: private ChatRoom chatRoom;
28: private String chatterID;
29:

자바야�놀자� -�활용편

Java

50

30: Chatter(ChatRoom chatRoom,
31: Socket clientSocket, String chatterID) {
32: System.out.println("Chatter 생성�: " + chatterID);
33: try {
34: this.chatRoom = chatRoom;
35: this.clientSocket = clientSocket;
36: this.chatterID = chatterID;
37: br = new BufferedReader(new InputStreamReader(

clientSocket.getInputStream()));
38: pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(

clientSocket.getOutputStream())));
39: (new readSocketThread()).start();
40: } catch (Exception e) {
41: System.out.println(e.toString());
42: }
43: }
44: public void sendMessage(String message) {
45: pw.println(message);
46: pw.flush();
47: }
48:
49: class readSocketThread extends Thread {
50: String inputString = null;
51: public void run() {
52: try {
53: while (true) {
54: inputString = br.readLine();
55: chatRoom.chatEveryChatter(inputString);
56: }
57: } catch (Exception e) {
58: System.out.println(e.toString());
59: }
60: }
61: }
62: }

49라인에서는�스레드를�통해�대화자가�서버로�전달하는�메시지를�감시합니다.� 앞에서�설

명한�그림의�①�에�해당됩니다.

다음�프로그램은�대화방에�해당하는�클래스입니다.

63: class ChatRoom {
64: private String roomName;
65: private Vector joinChatters = new Vector();
66: private Chatter roomMaker;
67:
68: ChatRoom(String roomName) {
69: System.out.println("채팅방�개설�: " + roomName);
70: this.roomName = roomName;

2
네트워크�프로그래밍

Chapter

51

71: this.roomMaker = null;
72: }
73:
74: public synchronized void joinChatter(Chatter chatter) {
75: joinChatters.add(chatter);
76: }
77:
78: public synchronized String getName() {
79: return roomName;
80: }
81:
82: public synchronized void chatEveryChatter(String message) {
83: for (int i=0 ; i < joinChatters.size() ; i++) {
84: ((Chatter)joinChatters.get(i)).sendMessage(message);
85: }
86: }
87:
88: public int size() {
89: return joinChatters.size();
90: }
91:
92: }

82라인의� chatEveryChatter()� 메서드는�방안에�있는� 모든� 대화자에게� 메시지를�보낼�때�

사용합니다.

다음�프로그램은�대화방을�관리하는�클래스입니다.�ChatRoomManager�클래스는�생성과�

동시에� "대기실"을� 만듭니다.

93: class ChatRoomManager {
94: private Vector chatRooms = new Vector();
95:
96: ChatRoomManager() {
97: System.out.println("ChatRoomManager Starting.");
98: chatRooms.add(new ChatRoom("대기실"));
99: }
100:
101: public void makeRoom(String roomName) { }
102:
103: public void deleteRoom(String roomName) { }
104:
105: public void enterRoom(String roomName, Socket clientSocket) {
106: Chatter chatter = null;
107: ChatRoom tempRoom = null;
108: boolean exitFor = false;
109: int i;
110: for(i=0; (exitFor == false)&&(i < chatRooms.size()); i++) {
111: tempRoom = (ChatRoom)chatRooms.get(i);
112: if (tempRoom.getName().equals(roomName)) {

자바야�놀자� -�활용편

Java

52

113: chatter = new Chatter(tempRoom, clientSocket,
String.valueOf(tempRoom.size() + 1));

114: tempRoom.joinChatter(chatter);
115: exitFor = true;
116: }
117: }
118: }
119:
120: public void exitRoom(Chatter chatter) { }
121:}

105라인의� enterRoom()�메서드를�통해,�현재�존재하는�모든�대화방을�찾아서�해당�대화

방을�찾고�그곳에� Chatter를� 생성합니다.� 이� 클래스는�대화방을�관리합니다.

다음�코드는�채팅� 서버를�전체적으로�관리하는�클래스입니다.

122:class ChatManager {
123: private int serverPort;
124: private ServerSocket serverSocket;
125: private ChatRoomManager chatRoomManager;
126:
127: ChatManager(int serverPort) {
128: System.out.println("Chatting Manager Starting");
129:
130: try {
131: this.serverPort = serverPort;
132: chatRoomManager = new ChatRoomManager();
133: serverSocket = new ServerSocket(serverPort);

134: new listenerThread().start();
135: } catch (Exception e) {
136: System.out.println(e.toString());
137: }
138: }
139:
140: class listenerThread extends Thread {
141: private boolean stopListener = false;
142: Socket clientSocket = null;
143: public void run() {
144: try {
145: while (!stopListener) {
146: System.out.println("Watting Client...");
147: clientSocket = serverSocket.accept();
148: chatRoomManager.enterRoom("대기실",clientSocket);
149: System.out.println("Connection Established form:" +

clientSocket.getInetAddress().getHostAddress());
150: }
151: } catch (Exception e) {
152: System.out.println(e.toString());

2
네트워크�프로그래밍

Chapter

53

153: }
154: }
155: }
156:}

123라인의�ChatManager�클래스는�133라인에서�ServerSocket�객체를�만듭니다.�그리고�

134라인은� 140라인에서� 선언된� ListenerThread라는� 내부� 클래스의� 객체를� 생성합니다.�

140라인에�선언된�내부�클래스가�스레드�클래스�입니다.�따라서� start()�메서드를�통해�스

레드가�시작되면� run()�메서드는�루프를�돌면서�클라이언트의�접속을�기다리다�접속이�이

루어지면� 일반� 소켓을� 만든� 후,� "대기실"에� Chatter� 클래스의� 객체를� 생성시키기� 위해�

ChatRoomManager의� enterRoom()� 메서드를� 호출합니다.� 그리고� 계속� 루프를� 돌면서�

다른� 클라이언트의�접속을�기다립니다.�

복잡한�내용을�간단하게�설명했는데�이를�근거로�프로그램을�자세히�살펴보면서�직접�이해

하기�바랍니다.�물론�이�프로그램에는�불필요한�부분도�있습니다.�그�이유는�GUI�버전으로�

작성하기�위해�추가된�부분이�있기�때문입니다.�따라서�이�코드를�응용해서�GUI� 용�채팅�

애플리케이션을�만들�수도� 있습니다.

2.3.2. ChatClient.java

다음�프로그램은�채팅에�필요한� ChatClient의� 클래스입니다.�

exam/java/chapter09/tcp/ChatClient.java

1: package exam.java.chapter09.tcp;
2:
3: import java.io.*;
4: import java.net.*;
5:
6: public class ChatClient {
7:
8: public static void main (String [] args) {
9:
10: String addr = "127.0.0.1";
11: int portNo = 5555;
12:
13: if (args.length == 2) {
14: addr = args[0];
15: portNo = Integer.parseInt(args[1]);
16: }
17:
18: ChatterManager cm = new ChatterManager(addr, portNo);
19:

자바야�놀자� -�활용편

Java

54

20: }
21: }
22:

클라이언트�프로그램은�비교적�짧습니다.�8라인의�main()�메서드에서�ChatterManager의�

객체를�생성합니다.�이�프로그램�역시�아래�이어지는�코드를�모두�작성해야�실행이�가능합니

다.

다음�코드는�ChatterManager클래스입니다.�이�클래스가�대부분의�클라이언트�채팅을�담

당합니다.

23: class ChatterManager {
24:
25: private String serverIP;
26: private int serverPort;
27: private Socket clientSocket;
28: private BufferedReader br;
29: private PrintWriter pw;
30: private BufferedReader keyboard;
31:
32: ChatterManager(String serverIP, int serverPort) {
33: try {
34:
35: this.serverIP = serverIP;
36: this.serverPort = serverPort;
37: clientSocket = new Socket(serverIP, serverPort);
38:
39: br = new BufferedReader(

new InputStreamReader(clientSocket.getInputStream()));
40:
41: pw = new PrintWriter(new BufferedWriter(

new OutputStreamWriter(clientSocket.getOutputStream())));
42:
43: keyboard = new BufferedReader(

new InputStreamReader(System.in, "KSC5601"));
44:
45: (new readSocketThread()).start();
46: (new writeSocketThread()).start();
47:
48: } catch (Exception e) {
49: System.out.println(e.toString());
50: }
51: }
52:

32라인의�생성자에서는�첫�번째�인자에�서버의� IP�주소가�전달되고,�두�번째�인자에�서버

의�포트번호가�전달됩니다.�그리고�37라인에서는�서버에�접속을�시도합니다.�서버와의�접

2
네트워크�프로그래밍

Chapter

55

속이�이루어지면�45라인과�46라인에서는�53라인과�65라인에�있는�스레드�클래스의�객체

를�생성하고�실행시킵니다.

다음�스레드�클래스는�대화자가�키보드에�입력하는�문자열을�받아들입니다.�

53: class readSocketThread extends Thread {
54: public void run() {
55: try {
56: while(true) {
57: System.out.println(br.readLine());
58: }
59: } catch (Exception e) {
60: System.out.println(e.toString());
61: }
62: }
63: }
64:
65: class writeSocketThread extends Thread {
66: String inputString = null;
67: public void run() {
68: try{
69: while ((inputString = keyboard.readLine()) != null) {
70: pw.println(inputString);
71: pw.flush();
72: }
73: } catch (Exception e) {
74: System.out.println(e.toString());
75: }
76: }
77: }
78: }

65라인의�스레드는�대화자가�키보드를�통해�입력하는�동안이라도�소켓에�메시지가�도착하

면�이를�화면에�출력하는�역할을�합니다.

자바야�놀자� -�활용편

Java

56

2.4. TCP�채팅�프로그램�Ⅱ�

다음�프로그램은�데이터를�이용한�채팅�예를�보인�것입니다.�화면�인터페이스를�CUI가�아

닌� GUI로� 작성했습니다.

exam/java/chapter09/tcp/ChatServer.java

1: package exam.java.chapter09.tcp;
2:
3: import java.io.*;
4: import java.net.*;
5: import java.util.*;
6: public class ChatServer {
7: Vector buffer;
8: ServerSocket serverSocket;
9: Socket socket;
10: ObjectInputStream ois;
11: ObjectOutputStream oos;
12:
13: public void service() {
14: try {
15: System.out.println("접속�준비중");
16: serverSocket = new ServerSocket(5555);
17: } catch (IOException e) {
18: System.err.println("서비스도중�IOException 발생!");
19: }
20:
21: while(true) {
22: try {
23: socket = serverSocket.accept();
24: System.out.println(socket.getInetAddress()+"접속!");
25: ois = new ObjectInputStream(socket.getInputStream());
26: oos = new ObjectOutputStream(socket.getOutputStream());
27: Thread t = new Thread(new ChatServerThread(buffer,ois,oos));
28: t.start();
29: } catch (IOException e) {
30: System.err.println("IOException 발생!");
31: }
32: }
33: }
34: public static void main(String args[]) {
35: System.out.println("Start Server Service...");
36: ChatServer2 cs = new ChatServer2();
37: cs.buffer = new Vector(5,1);
38: cs.service();
39: }
40: }

다음�프로그램은�클라이언트�하나에�하나씩�만들어질�스레드입니다.�클라이언트가�데이터

2
네트워크�프로그래밍

Chapter

57

객체를�보내면�Vector에�저장된�ObjectOutputStream을�이용해서�알리게�됩니다.�클라이

언트가�종료되면�스레드도�함께�종료됩니다.

exam/java/chapter09/tcp/ChatServerThread.java

1: package exam.java.chapter09.tcp;
2:
3: import java.io.*;
4: import java.util.*;
5:
6: public class ChatServerThread implements Runnable{
7: Vector buffer;
8: ObjectInputStream ois;
9: ObjectOutputStream oos;
10: Data d;
11: boolean exit;
12: String name;
13:
14: public ChatServerThread(Vector v, ObjectInputStream ois ,

ObjectOutputStream oos) {
15: this.buffer = v;
16: this.ois = ois;
17: this.oos = oos;
18: exit = false;
19: }
20:
21: public void run() {
22: while(!exit) {
23: try {
24: d = (Data) ois.readObject();
25: } catch (ClassNotFoundException e) {
26: System.err.println("Data class를�찾을�수� 없음!");
27: } catch (OptionalDataException e1) {
28: System.err.println("OptionalDataException 발생!");
29: } catch (IOException e3) {
30: System.err.println("IOExcdetion이�발생!");
31: }
32: int state = d.getState();
33: if(state == Data.접속종료) {
34: exit = true;
35: d.setMessage("님이�종료하셨습니다.");
36: name = d.getName();
37: broadCasting();
38: for(int i = 0 ; i <buffer.size() ; i++) {
39: if(((Data)buffer.elementAt(i)).getName().equals(name)) {
40: buffer.removeElementAt(i);
41: break;
42: }
43: }
44: try{ ois.close();
45: oos.close();

자바야�놀자� -�활용편

Java

58

46: }catch(IOException ex) {}
47:
48: } else if(state == Data.처음접속) {
49: Vector userName = new Vector(5,1);
50: d.setOOS(oos);
51: buffer.addElement(d);
52: for(int i=0 ; i < buffer.size() ; i++) {
53: userName.addElement(((Data)buffer.elementAt(i)).getName());
54: }
55: d.setUserName(userName);
56: System.out.println("broadCasting 시작");
57: broadCasting();
58: } else {
59: broadCasting();
60: }
61: }
62: }
63:
64: public void broadCasting() {
65: Vector v = (Vector)buffer.clone();
66: for(int i = 0 ; i < v.size() ; i++) {
67: try {
68: ((Data)v.elementAt(i)).getOOS().writeObject(d);
69: System.out.println("111");
70: } catch (IOException e) {
71: System.err.println("broadCasting method에서�예외�발생!");
72: e.printStackTrace();
73: }
74: }
75: }
76: }

다음�프로그램은�서버와�클라이언트�사이에�정보를�주고받기�위한�클래스의�예를�보인�것

입니다.�

exam/java/chapter09/tcp/Data.java

1: package exam.java.chapter09.tcp;
2:
3: import java.io.*;
4: import java.util.*;
5:
6: public class Data implements Serializable{
7: private String message;
8: private String name;
9: private int state;
10: private transient ObjectOutputStream oos;
11: private Vector userName;
12: public static final int 처음접속�= 0;
13: public static final int 접속종료�= -1;
14: public static final int 대화중�= 1;
15:

2
네트워크�프로그래밍

Chapter

59

16: public Data (String name, String message, int state, ObjectOutputStream o) {
17: this.name = name;
18: this.message = message;
19: this.state = state;
20: this.oos = o;
21: }
22: public Data (String name, String message, int state) {
23: this(name , message, state, null);
24: }
25: public String getMessage() {
26: return message;
27: }
28: public void setMessage(String s) {
29: message = s;
30: }
31: public String getName() {
32: return name;
33: }
34: public void setName(String s) {
35: name = s;
36: }
37: public int getState() {
38: return state;
39: }
40: public void setState(int i) {
41: state = i;
42: }
43: public ObjectOutputStream getOOS() {
44: return oos;
45: }
46: public void setOOS(ObjectOutputStream o) {
47: oos = o;
48: }
49: public Vector getUserName() {
50: return this.userName;
51: }
52: public void setUserName(Vector v) {
53: this.userName = v;
54: }
55: }

다음은�클라이언트�코드입니다.

exam/java/chapter09/tcp/ChatClient2.java

1: package exam.java.chapter09.tcp;
2:
3: import java.io.*;
4: import java.net.*;
5: import java.awt.*;
6: import java.awt.event.*;
7:

자바야�놀자� -�활용편

Java

60

8: public class ChatClient2 {
9: Socket socket;
10: ObjectInputStream ois;
11: ObjectOutputStream oos;
12:
13: Thread t;
14:
15: Frame first , second;
16: Label state , commLabel , userLabel , serverLabel;
17: Label IDLabel , userCount;
18: TextArea commList;
19: List userList;
20: Button conn , transmission;
21: TextField stateTextField , transTextField;
22: TextField serverTextField , IDTextField;
23:
24: String name;
25: ChatClientThread cct;
26:
27: public void connection(String serverName , int port) throws IOException{
28: socket = new Socket(serverName,port);
29: System.out.println(serverName + " 에�접속!");
30:
31: oos = new ObjectOutputStream(socket.getOutputStream());
32: ois = new ObjectInputStream(socket.getInputStream());
33: System.out.println("OutputStream을�열었습니다. ");
34: Data d = new Data(IDTextField.getText(),"님이�접.", Data.처음접속);
35: System.out.println("Stream 연결에�성공하였습니다.");
36: oos.writeObject(d) ;
37:
38: System.out.println("InputStream을�열었습니다. ");
39:
40: cct = new ChatClientThread(ois,this);
41: t = new Thread(cct);
42: t.start();
43: }
44:
45:
46: /**
47: * 처음�보여질�GUI화면�
48: * Server의�이름과�User의�ID를�받아들여서,
49: * Connection() 메서드를�호출합니다.
50: */
51: public void firstGo() {
52: first = new Frame("Chat Browser");
53: first.addWindowListener(new WindowAdapter() {
54: public void windowClosing(WindowEvent e) {
55: first.setVisible(false);
56: first.dispose();
57: System.exit(1);

2
네트워크�프로그래밍

Chapter

61

58: }
59: });
60:
61: Panel p = new Panel();
62: p.setLayout(new GridLayout(2,2));
63: serverLabel = new Label("Server",Label.CENTER);
64: IDLabel = new Label(" I D ",Label.CENTER);
65: serverTextField = new TextField(0);
66: IDTextField = new TextField(0);
67: p.add(serverLabel);
68: p.add(serverTextField);
69: p.add(IDLabel);
70: p.add(IDTextField);
71:
72: conn = new Button("연결");
73: conn.addActionListener(new ActionHandler());
74: first.add(p,"Center");
75: first.add(conn,"South");
76: first.setSize(300,100);
77:
78: /*
79: * 화면의�중앙에�GUI가�보여질�수�있도록�합니다.
80: * 현재의�Screen Size을�얻어온�후�중앙에�Dispaly 합니다.
81: */
82: Dimension d = first.getToolkit().getScreenSize();
83: first.setLocation(d.width/2 - first.getWidth()/2 , d.height/2 -

first.getHeight()/2);
84: first.setResizable(false);
85: first.setVisible(true);
86: }
87:
88: /**
89: * 두번째로�보여질�GUI Chatting에�필요한�TextField와�
90: * 현재�접속되어�있는�사용자의�이름,
91: * 그리고�대화�내용이�Display될�화면입니다.
92: */
93: public void secondGo() {
94: second = new Frame("Chat v1.0 second");
95: second.addWindowListener(new WindowAdapter() {
96: public void windowClosing(WindowEvent e) {
97: frameClose(e);
98: }
99: });
100: state = new Label("접속중...");
101: state.setBackground(Color.yellow);
102: state.setForeground(Color.blue);
103: second.add(state,"North");
104:
105: Panel p1 = new Panel();
106: p1.setLayout(new BorderLayout());

자바야�놀자� -�활용편

Java

62

107: commLabel = new Label("대화내용");
108: commList = new TextArea();
109: commList.setEditable(false);
110: p1.add(commLabel,"North");
111: p1.add(commList,"Center");
112:
113: Panel p2 = new Panel();
114: p2.setLayout(new BorderLayout());
115: userLabel = new Label("사용자명",Label.CENTER);
116: userList = new List();
117: userCount = new Label("",Label.CENTER);
118: p2.add(userLabel,"North");
119: p2.add(userList,"Center");
120: p2.add(userCount,"South");
121:
122: Panel p3 = new Panel();
123: transTextField = new TextField(50);
124: //transTextField.requestFocus(); // TextField에�커서가�깜박이게�합니다.
125: transTextField.addActionListener(new ActionHandler());
126: transmission = new Button("전송");
127: transmission.addActionListener(new ActionHandler());
128: p3.add(transTextField);
129: p3.add(transmission);
130:
131: second.add(p3,"South");
132: second.add(p1,"Center");
133: second.add(p2,"West");
134: second.setSize(600,500);
135: Dimension d = second.getToolkit().getScreenSize();
136: second.setLocation(d.width/2 - second.getWidth()/2 , d.height/2 -

second.getHeight()/2);
137: second.setResizable(false);
138:
139: second.setVisible(true);
140: }
141:
142: public void frameClose(WindowEvent e) {
143: Frame f = (Frame) e.getSource();
144: f.setVisible(false);
145: f.dispose();
146: cct.exit = true;
147: try {
148: oos.writeObject(new Data(name,"님이�나가셨습니다.", Data.접속종료));
149: oos.close();
150: } catch (IOException e1) {
151: System.err.println("종료중�IOExcpetion이�발생!");
152: }
153: System.exit(0);
154: }
155:

2
네트워크�프로그래밍

Chapter

63

156: /**
157: * Acrtion Event를�처리하는�Inner class입니다.
158: */
159: public class ActionHandler implements ActionListener{
160: public void actionPerformed(ActionEvent e) {
161: String actionCommand = e.getActionCommand();
162: if(actionCommand.equals("연결")) {
163: String server = serverTextField.getText();
164: name = IDTextField.getText();
165: first.setVisible(false);
166: first.dispose();
167: secondGo();
168: try {
169: connection(server,5555);
170: } catch (IOException e1) {
171: System.err.println("Connection 중�Exception이�발생하였습니다.");
172: }
173: state.setText("[" + server +"]" + " 에�접속됨. UserID : " + name);
174: } else if (actionCommand.equals("전송") ||

e.getSource().equals(transTextField)) {
175: try {
176: oos.writeObject(new Data(name,transTextField.getText(),

Data.대화중));
177: } catch (IOException e2) {
178: System.err.println("대화중�IOException이�발생하였습니다�");
179: }
180: transTextField.setText("");
181: }
182: }
183: }
184:
185: public static void main(String args[]) {
186: ChatClient2 cc = new ChatClient2();
187: cc.firstGo();
188: }
189:}//end class

exam/java/chapter09/tcp/ChatClientThread.java

1: package exam.java.chapter09.tcp;
2:
3: import java.io.*;
4: import java.util.*;
5:
6: public class ChatClientThread implements Runnable{
7: ObjectInputStream ois;
8: ChatClient2 cc;
9: Data d;
10: boolean exit = false;
11:

자바야�놀자� -�활용편

Java

64

12: public ChatClientThread(ObjectInputStream ois, ChatClient2 cc) {
13: this.ois = ois;
14: this.cc = cc;
15: }
16:
17: public void run() {
18: while(!exit) {
19: try {
20: d = (Data) ois.readObject();
21: } catch (IOException e) {
22: System.err.println("run method IOException");
23: } catch (ClassNotFoundException e1) {
24: System.err.println("Data class NotFound");
25: }
26: int state = d.getState();
27: String name = d.getName();
28: if(state == Data.처음접속) {
29: Vector userName = d.getUserName();
30: cc.userList.removeAll();
31: for(int i = 0 ; i < userName.size() ; i++) {
32: cc.userList.add((String)userName.elementAt(i));
33: }
34: cc.userCount.setText("현재�" + cc.userList.getItemCount() +
35: "명�접속중");
36: } else if (state == Data.접속종료) {
37: cc.userList.remove(name);
38: cc.userCount.setText("현재�" + cc.userList.getItemCount() +
39: "명�접속중");
40: }
41: cc.commList.append("[" + name + "]" + d.getMessage() + "\n");
42: }
43: try {
44: ois.close();
45: } catch (IOException e) {
46: System.err.println(" ChatClientThread에의�ObjectOutputStream을�

Close하는�중에�IOException 발생!");
47: }
48: }//end run
49: }

채팅서버에�접속하기�위한�클라이언트�시작화면입니다.�서버의�아이피와�대화자의�아이디

를�입력합니다.

2
네트워크�프로그래밍

Chapter

65

다음�그림은�클라이언트�대화�화면입니다.�

자바야�놀자� -�활용편

Java

66

2.5. TCP�파일서버�프로그램

다음�프로그램은�간단한�파일서버�프로그램의�예를�보인�것입니다.�서버로부터�특정파일을�

읽어�클라이언트�화면에�서버의�파일내용을�출력합니다.

exam/java/chapter09/tcp/FileServer.java

1: package exam.java.chapter09.tcp;
2:
3: import java.awt.*;
4: import java.net.*;
5: import java.io.*;
6:
7: public class FileServer {
8:
9: public static void main(String[] args) {
10: ServerSocket s = null;
11: Socket s1;
12: byte[] intbuf = new byte[100];
13: String fileName;
14:
15: try {
16: s = new ServerSocket(4321, 1);
17: } catch (IOException e) {
18: System.out.println("\nServer timed out!");
19: System.exit(-1);
20: }
21:
22: while(true) {
23: try {
24: s1 = s.accept();
25: fileName = getFileName(s1);
26: sendFileToClient(s1, fileName);
27: s1.close();
28: } catch(IOException e) {
29: System.out.println("Error - " + e.toString());
30: }
31: }
32: }
33:
34: public static String getFileName(Socket s1) throws IOException {
35: InputStream s1in;
36: DataInputStream d1In;
37: String sfile;
38: s1in = s1.getInputStream();
39: d1In = new DataInputStream(s1in);
40: sfile = d1In.readLine();
41: System.out.println("File to open for reading : " + sfile);

2
네트워크�프로그래밍

Chapter

67

42: return(sfile);
43: }
44:
45: public static void sendFileToClient (Socket s1, String sfile) throws

IOException {
46: int c;
47: FileInputStream fis;
48: OutputStream s1out;
49: s1out = s1.getOutputStream();
50: File f = new File(sfile);
51:
52: if(f.exists() != true) {
53: String error = new String ("File " + sfile + "은(는) 존재하지�않습니다.\n");
54: int len = error.length();
55: for(int i=0; i<len; i++) {
56: s1out.write((int)error.charAt(i));
57: }
58: System.out.println(error);
59: return;
60: }
61:
62: if(f.canRead()) {
63: fis = new FileInputStream(sfile);
64: System.out.println("Sending : " + sfile);
65: while((c=fis.read()) != -1) {
66: s1out.write(c);
67: }
68: fis.close();
69: } else {
70: String error = new String ("Can't open " + sfile + "for reading...\n");
71: int len = error.length();
72: for(int i=0; i<len ; i++) {
73: s1out.write((int)error.charAt(i));
74: }
75: System.out.println(error);
76: }
77: }
78: }

다음은�클라이언트�측�코드입니다.

exam/java/chapter09/tcp/FileClient.java

1: package exam.java.chapter09.tcp;
2:
3: import java.net.*;
4: import java.io.*;
5:
6: import javax.swing.JOptionPane;
7:

자바야�놀자� -�활용편

Java

68

8: public class FileClient {
9:
10: public static void main(String[] args) {
11: Socket s;
12: String server = JOptionPane.showInputDialog("서버의�주소를�입력하세요.");
13: String fileName = JOptionPane.showInputDialog("파일명을�입력하세요.");
14: int port = 4321;
15:
16: try{
17: s = new Socket (server, port);
18: sendFileName (s,fileName);
19: receiveFile (s);
20: s.close();
21: } catch (IOException e) {
22: System.out.println("Connection failed");
23: }
24: }
25:
26: public static void sendFileName (Socket s, String fileName) throws

IOException {
27: OutputStream sOut;
28: DataOutputStream dOut;
29:
30: sOut = s.getOutputStream();
31: dOut = new DataOutputStream(sOut);
32: String sendString = new String(fileName + "\n");
33: dOut.writeBytes(sendString);
34: }
35:
36: public static void receiveFile(Socket s) throws IOException {
37: int c;
38: InputStream sIn;
39: sIn = s.getInputStream();
40:
41: while ((c=sIn.read()) != -1) {
42: System.out.print((char)c);
43: }
44: }
45: }

2
네트워크�프로그래밍

Chapter

69

2.6. 요점�정리

1.� TCP�네트워크�프로그래밍

소켓과�소켓�사이의�입출력

서버

serverSocket� =� new�ServerSocket(5432);

socket� =� serverSocket.accept();

클라이언트

socket� =� new� Socket("127.0.0.1",� 5432);

